Publications

Articles in scientific journals

Books

Theses
See also profiles on Publons,
Orcid or
Google Scholar.
1. Articles in scientific journals
 Isometric bending requires local constraints on free edges
Jemal Guven, Martin Michael Müller, Pablo VázquezMontejo 
Abstract
Read more
Math. Mech. Solids, 2019. See also arXiv:1904.05855.
 Helical Superstructure of Intermediate Filaments
Lila Bouzar, Martin Michael Müller, René Messina, Bernd Nöding, Sarah Köster, Hervé Mohrbach, Igor M. Kulić 
Abstract
Read more
Phys. Rev. Lett., 122: 098101, 2019. See also arXiv:1803.04691.
 Vesicle dynamics in confined steady and harmonically modulated Poiseuille flows
Zakaria Boujja, Chaouqi Misbah, Hamid EzZahraouy, Abdelilah Benyoussef, Thomas John, Christian Wagner, Martin Michael Müller 
We present a numerical study of the timedependent motion of a membrane vesicle in a
channel under an imposed flow. In a Poiseuille flow the shape of the vesicle depends on the flow strength,
the mechanical properties of the membrane, and the width of the channel. In a wide parameter region, the
emerging snaking shape shows an oscillatory motion like a swimmer flagella even though the flow is
stationary. We quantify this behavior by the amplitude and frequency of the oscillations of the vesicle's
center of mass. The influence of an amplitude modulation of the imposed flow on the dynamics and shape of
the snaking vesicle is also investigated. We find that this modulationwhen sufficiently smallinduces
a modulation in amplitude and frequency of the center of mass of the snaking vesicle. For large
modulation amplitudes transitions to static shapes are observed.
Reduce
Phys. Rev. E, 98: 043111, 2018. See also arXiv:1810.04500.
 Confining a fluid membrane vesicle of toroidal topology in an adhesive hard sphere
Lila Bouzar, Ferhat Menas, Martin Michael Müller 
Abstract
Read more
IOP Conf. Series: MSE, 186: 012021, 2017.
 Squeezed helical elastica
Lila Bouzar, Martin Michael Müller, Pierre Gosselin, Igor M. Kulić, Hervé Mohrbach 
Abstract
Read more
Eur. Phys. J. E, 39: 114, 2016. See also arXiv:1606.03611.
 How biofilaments twist membranes
Julien Fierling, Albert Johner, Igor M. Kulić, Hervé Mohrbach, Martin Michael Müller 
Abstract
Soft Matter, 12: 5747, 2016.
 Toroidal membrane vesicles in spherical confinement
Lila Bouzar, Ferhat Menas, Martin Michael Müller 
We investigate the morphology of a toroidal fluid membrane vesicle confined inside a spherical container.
The equilibrium shapes are assembled in a geometrical phase diagram as a function of scaled area and
reduced volume of the membrane. For small area the vesicle can adopt its free form. When increasing
the area, the membrane cannot avoid contact and touches the confining sphere along a circular contact line,
which extends to a zone of contact for higher area. The elastic energies of the equilibrium shapes are
compared to those of their confined counterparts of spherical topology to predict under which conditions a
topology change is favored energetically.
Reduce
Read more
Phys. Rev. E, 92: 032721, 2015. See also arXiv:1509.00765.
 Nonlinear buckling and symmetry breaking of a soft elastic sheet sliding on a cylindrical substrate
Norbert Stoop, Martin Michael Müller 
Abstract
Read more
Int. J. NonLinear Mech., 75: 115, 2015. See also arXiv:1503.05030.
 Crunching Biofilament Rings
Julien Fierling, Martin Michael Müller, Hervé Mohrbach, Albert Johner, Igor M. Kulić 
Abstract
Read more
Europhys. Lett., 107(6): 68002, 2014. See also arXiv:1408.6787.
 Confotronic dynamics of tubular filaments
Osman Kahraman, Hervé Mohrbach, Martin Michael Müller, Igor M. Kulić 
Abstract
Read more
Soft Matter, 10(16): pp. 28362847, 2014. See also arXiv:1312.3106.
 Whirling skirts and rotating cones
Jemal Guven, J. A. Hanna, Martin Michael Müller 
Steady, dihedrally symmetric patterns with sharp peaks may be observed on a spinning skirt, lagging behind the material flow of the fabric. These qualitative features are captured with a minimal model of traveling waves on an inextensible, flexible, generalizedconical sheet rotating about a fixed axis. Conservation laws are used to reduce the dynamics to a quadrature describing a particle in a threeparameter family of potentials. One parameter is associated with the stress in the sheet, aNoether is the current associated with rotational invariance, and the third is a Rossby number which indicates the relative strength of Coriolis forces. Solutions are quantized by enforcing a topology appropriate to a skirt and a particular choice of dihedral symmetry. A perturbative analysis of nearly axisymmetric cones shows that Coriolis effects are essential in establishing skirtlike solutions. Fully nonlinear solutions with threefold symmetry are presented which bear a suggestive resemblance to the observed patterns.
Reduce
New J. Phys., 15: 113055, 2013. See also arXiv:1306.2619.
 Myotubularin and PtdIns3P remodel the sarcoplasmic reticulum in muscle in vivo
Leonela Amoasii, Karim Hnia, Gaëtan Chicanne, Andreas Brech, Belinda Simone Cowling, Martin Michael Müller, Yannick Schwab, Pascale Koebel, Arnaud Ferry, Bernard Payrastre, Jocelyn Laporte 
Abstract
J. Cell Sci., 126(8): 1806, 2013.
 Dipoles in thin sheets
Jemal Guven, J. A. Hanna, Osman Kahraman, Martin Michael Müller 
A flat elastic sheet may contain pointlike conical singularities that carry a metrical "charge" of Gaussian curvature. Adding such elementary defects to a sheet allows one to make many shapes, in a manner broadly
analogous to the familiar multipole construction in electrostatics. However, here the underlying field theory is nonlinear,
and superposition of intrinsic defects is nontrivial as it must respect the immersion of the resulting surface in three
dimensions. We consider a "chargeneutral" dipole composed of two conical singularities of opposite sign.
Unlike the relatively simple electrostatic case, here there are two distinct stable minima and an infinity of unstable equilibria.
We determine the shapes of the minima and evaluate their energies in the thinsheet regime where bending dominates
over stretching. Our predictions are in surprisingly good agreement with experiments on paper sheets.
Reduce
Read more
Eur. Phys. J. E, 36: 106, 2013. See also arXiv:1212.3262.
 Fluid membrane vesicles in confinement
Osman Kahraman, Norbert Stoop, Martin Michael Müller 
Abstract
Read more
New J. Phys., 14: 095021, 2012.
 Petal shapes of sympetaleous flowers: the interplay between growth, geometry and elasticity
Martine Ben Amar, Martin Michael Müller, Miguel Trejo 
The growth of a thin elastic sheet imposes constraints on its geometry such as its Gaussian curvature K_{G}.
In this paper, we construct the shapes of sympetalous bellshaped flowers with a constant Gaussian curvature. Minimizing the bending energies
of both the petal and the veins, we are able to predict quantitatively the global shape of these flowers. We discuss two toy problems
where the Gaussian curvature is either negative or positive. In the former case the axisymmetric pseudosphere turns out to mimic the correct
shape before edge curling; in the latter case, singularities of the mathematical surface coincide with strong veins. Using a variational
minimization of the elastic energy, we find that the optimal number for the veins is either four, five or six, a number which is deceptively
close to the statistics on real flowers in nature.
Reduce
Read more
New J. Phys., 14: 085014, 2012. Also featured in the Highlights of 2012.
 Morphogenesis of membrane invaginations in spherical confinement
Osman Kahraman, Norbert Stoop, Martin Michael Müller 
Abstract
Read more
Europhys. Lett., 97(6): 68008, 2012. See also arXiv:1201.2518.
 Conical instabilities on paper
Jemal Guven, Martin Michael Müller, Pablo VázquezMontejo 
Abstract
Read more
J. Phys. A: Math. Theor., 45(1): 015203, 2012. See also arXiv:1107.5008.
 Interfacemediated interactions: Entropic forces of curved membranes
Pierre Gosselin, Hervé Mohrbach, Martin Michael Müller 
Abstract
Read more
Phys. Rev. E, 83(5): 051921, 2011. See also arXiv:1011.1221.
 SelfContact and Instabilities in the Anisotropic Growth of Elastic Membranes
Norbert Stoop, Falk K. Wittel, Martine Ben Amar, Martin Michael Müller, Hans J. Herrmann 
Abstract
Read more
Phys. Rev. Lett., 105(6): 068101, 2010. See also arXiv:1007.1871.
 Cell Model Approach to Membrane Mediated Protein Interactions
Martin Michael Müller, Markus Deserno 
Abstract
Read more
Prog. Theor. Phys. Suppl., 184: pp. 351363, 2010.
 Hamiltonian formulation of surfaces with constant Gaussian curvature
Miguel Trejo, Martine Ben Amar, Martin Michael Müller 
Abstract
Read more
J. Phys. A: Math. Theor., 42(42): 425204, 2009.
 Local Membrane Mechanics of PoreSpanning Bilayers
Ingo Mey, Milena Stephan, Eva K. Schmitt, Martin Michael Müller, Martine Ben Amar, Claudia Steinem, Andreas Janshoff 
Abstract
Read more
J. Am. Chem. Soc., 131(20): pp. 70317039, 2009.
 Elasticity Mapping of PoreSuspending Native Cell Membranes
Bärbel Lorenz, Ingo Mey, Siegfried Steltenkamp, Tamir Fine, Christina Rommel, Martin Michael Müller, Alexander Maiwald, Joachim Wegener, Claudia Steinem, Andreas Janshoff 
Abstract
Read more
Small, 5(7): pp. 832838, 2009.
 Conical Defects in Growing Sheets
Martin Michael Müller, Martine Ben Amar, Jemal Guven 
Abstract
Read more
Phys. Rev. Lett., 101(15): 156104, 2008. See also arXiv:0807.1814.
 How paper folds: bending with local constraints
Jemal Guven, Martin Michael Müller 
Abstract
Read more
J. Phys. A: Math. Theor., 41(5): 055203, 2008. See also arXiv:0712.0978.
 Contact lines for fluid surface adhesion
Markus Deserno, Martin Michael Müller, Jemal Guven 
Abstract
Read more
Phys. Rev. E, 76(1): 011605, 2007. See also condmat/0703019. Also featured in the Virtual Journal of Biological Physics Research.
 Balancing torques in membranemediated interactions: Exact results and
numerical illustrations
Martin Michael Müller, Markus Deserno, Jemal Guven 
Abstract
Read more
Phys. Rev. E, 76(1): 011921, 2007. See also condmat/0702340. Also featured in the Virtual Journal of Biological Physics Research.
 Aggregation and vesiculation of membrane proteins by curvaturemediated
interactions
Benedict J. Reynwar, Gregoria Illya, Vagelis A. Harmandaris, Martin Michael Müller, Kurt Kremer, Markus Deserno 
Abstract
Read more
Nature 447(7143): pp. 461464, 2007.
 How to determine local elastic properties of lipid bilayer membranes
from atomicforcemicroscope measurements: A theoretical analysis
Davood Norouzi, Martin Michael Müller, Markus Deserno 
Abstract
Read more
Phys. Rev. E, 74(6): 061914, 2006. See also condmat/0602662. Also featured in the Virtual Journal of Biological Physics Research.
 Mechanical Properties of PoreSpanning Lipid Bilayers Probed by Atomic Force Microscopy
Siegfried Steltenkamp, Martin Michael Müller, Markus Deserno, Christian Hennesthal, Claudia Steinem, Andreas Janshoff 
We measure the elastic response of a freestanding lipid membrane to a local indentation by using an atomic force microscope. Starting point is a planar
goldcoated alumina substrate with a chemisorbed 3mercaptopropionic acid
monolayer displaying circular pores of very well defined and tunable size, over
which bilayers composed of N,N, dimethyl N,N, dioctadecylammonium bromide or
1,2  dioleoyl  3  trimethylammonium  propane chloride were spread.
Centrally indenting these 'nanodrums' with an atomic force microscope tip yields
forceindentation curves, which we quantitatively analyze by solving the
corresponding shape equations of continuum curvature elasticity. Since the
measured response depends in a known way on the system geometry (pore size, tip
radius) and on material parameters (bending modulus, lateral tension), this opens
the possibility to monitor local elastic properties of lipid membranes in a
wellcontrolled setting.
Reduce
Read more
Biophys. J., 91(1): pp. 217226, 2006.
 Interface mediated interactions between particles  a geometrical approach
Martin Michael Müller, Markus Deserno, Jemal Guven 
Particles bound to an interface interact because they deform its shape.
The stresses that result are fully encoded in the geometry and described
by a divergencefree surface stress tensor. This stress tensor can be
used to express the force on a particle as a line integral along any
conveniently chosen closed contour that surrounds the particle. The
resulting expression is exact (i.e., free of any 'smallness' assumptions)
and independent of the chosen surface parametrization. Additional surface
degrees of freedom, such as vector fields describing lipid tilt, are readily
included in this formalism. As an illustration, we derive the exact force
for several important surface Hamiltonians in various symmetric twoparticle
configurations in terms of the midplane geometry; its sign is evident in
certain interesting limits. Specializing to the linear regime, where the
shape can be analytically determined, these general expressions yield
forcedistance relations, several of which have originally been derived
by using an energy based approach.
Reduce
Read more
Phys. Rev. E, 72(6): 061407, 2005. See also condmat/0506019. Also featured in the Virtual Journal of Biological Physics Research.
 Geometry of surfacemediated interactions
Martin Michael Müller, Markus Deserno, Jemal Guven 
Abstract
Read more
Europhys. Lett., 69(3): pp. 482488, 2005. See also condmat/0409043.
2. Books

New Trends in the Physics and Mechanics of Biological Systems
Lecture Notes of the Les Houches Summer School, vol. 92 (Oxford University Press, 2011),
edited by Martine Ben Amar, Alain Goriely, Martin Michael Müller and Leticia Cugliandolo.
Chapter 9:
The physics of the cell membrane
Martin Michael Müller and Martine Ben Amar.
3. Theses

Theoretical examinations of interface mediated interactions between colloidal particles,
diploma thesis (2004).

Theoretical studies of fluid membrane mechanics, dissertation (2007).

Symmetry breaking in bioelasticity, habilitation thesis (2015).
