Publications (en anglais)

Articles scientifiques

Livres

Mémoires
Voir aussi les profiles sur
Publons,
Orcid ou
Google Scholar.
1. Articles scientifiques
 Flexoelectric fluid membrane vesicles in spherical confinement
Niloufar Abtahi, Lila Bouzar, Nadia SaidiAmroun, Martin Michael Müller 
Résumé
Plus d'infos
EPL, 131(1): 18001, 2020. Cf. aussi arXiv:2006.04475.
 Isometric bending requires local constraints on free edges
Jemal Guven, Martin Michael Müller, Pablo VázquezMontejo 
Résumé
Plus d'infos
Math. Mech. Solids, 24: 4051, 2019. Cf. aussi arXiv:1904.05855.
 Helical Superstructure of Intermediate Filaments
Lila Bouzar, Martin Michael Müller, René Messina, Bernd Nöding, Sarah Köster, Hervé Mohrbach, Igor M. Kulić 
Résumé
Plus d'infos
Phys. Rev. Lett., 122: 098101, 2019. Cf. aussi arXiv:1803.04691.
 Vesicle dynamics in confined steady and harmonically modulated Poiseuille flows
Zakaria Boujja, Chaouqi Misbah, Hamid EzZahraouy, Abdelilah Benyoussef, Thomas John, Christian Wagner, Martin Michael Müller 
Résumé
Phys. Rev. E, 98: 043111, 2018. Cf. aussi arXiv:1810.04500.
 Confining a fluid membrane vesicle of toroidal topology in an adhesive hard sphere
Lila Bouzar, Ferhat Menas, Martin Michael Müller 
Résumé
Plus d'infos
IOP Conf. Series: MSE, 186: 012021, 2017.
 Squeezed helical elastica
Lila Bouzar, Martin Michael Müller, Pierre Gosselin, Igor M. Kulić, Hervé Mohrbach 
We theoretically study the conformations of a helical semiflexible filament
confined to a twodimensional surface. This squeezed helix exhibits a variety of unexpected shapes
resembling circles, waves or spirals depending on the material parameters. We explore the conformation
space in detail and show that the shapes can be understood as the mutual elastic interaction of
conformational quasiparticles. Our theoretical results are potentially useful to
determine the material parameters of such helical filaments in an experimental setting.
Fermer
Plus d'infos
Eur. Phys. J. E, 39: 114, 2016. Cf. aussi arXiv:1606.03611.
 How biofilaments twist membranes
Julien Fierling, Albert Johner, Igor M. Kulić, Hervé Mohrbach, Martin Michael Müller 
Résumé
Soft Matter, 12: 5747, 2016.
 Toroidal membrane vesicles in spherical confinement
Lila Bouzar, Ferhat Menas, Martin Michael Müller 
Résumé
Plus d'infos
Phys. Rev. E, 92: 032721, 2015. Cf. aussi arXiv:1509.00765.
 Nonlinear buckling and symmetry breaking of a soft elastic sheet sliding on a cylindrical substrate
Norbert Stoop, Martin Michael Müller 
We consider the axial compression of a thin sheet wrapped around a rigid cylindrical substrate. In contrast to the wrinklingtofold transitions exhibited in similar systems, we find that the sheet always buckles into a single symmetric fold, while periodic solutions are unstable. Upon further compression, the solution breaks symmetry and stabilizes into a recumbent fold. Using linear analysis and numerics, we theoretically predict the buckling force and energy as a function of the compressive displacement. We compare our theory to experiments employing cylindrical neoprene sheets and find remarkably good agreement.
Fermer
Plus d'infos
Int. J. NonLinear Mech., 75: 115, 2015. Cf. aussi arXiv:1503.05030.
 Crunching Biofilament Rings
Julien Fierling, Martin Michael Müller, Hervé Mohrbach, Albert Johner, Igor M. Kulić 
Résumé
Plus d'infos
Europhys. Lett., 107(6): 68002, 2014. Cf. aussi arXiv:1408.6787.
 Confotronic dynamics of tubular filaments
Osman Kahraman, Hervé Mohrbach, Martin Michael Müller, Igor M. Kulić 
Tubular lattices are ubiquitous in nature and technology. Microtubules and nanotubes of all
kinds act as important pillars of biological cells and the manmade nanoworld. We show that
when prestress is introduced in such structures, localized conformational quasiparticles emerge and
govern the collective shape dynamics of the lattice. When coupled via cooperative interactions these
quasiparticles form largerscale quasipolymer superstructures exhibiting collective dynamic modes
and giving rise to a hallmark behavior radically different from semiflexible beams.
Fermer
Plus d'infos
Soft Matter, 10(16): pp. 28362847, 2014. Cf. aussi arXiv:1312.3106.
 Whirling skirts and rotating cones
Jemal Guven, J. A. Hanna, Martin Michael Müller 
Résumé
New J. Phys., 15: 113055, 2013. Cf. aussi arXiv:1306.2619.
 Myotubularin and PtdIns3P remodel the sarcoplasmic reticulum in muscle in vivo
Leonela Amoasii, Karim Hnia, Gaëtan Chicanne, Andreas Brech, Belinda Simone Cowling, Martin Michael Müller, Yannick Schwab, Pascale Koebel, Arnaud Ferry, Bernard Payrastre, Jocelyn Laporte 
Résumé
J. Cell Sci., 126(8): 1806, 2013.
 Dipoles in thin sheets
Jemal Guven, J. A. Hanna, Osman Kahraman, Martin Michael Müller 
Résumé
Plus d'infos
Eur. Phys. J. E, 36: 106, 2013. Cf. aussi arXiv:1212.3262.
 Fluid membrane vesicles in confinement
Osman Kahraman, Norbert Stoop, Martin Michael Müller 
Résumé
Plus d'infos
New J. Phys., 14: 095021, 2012.
 Petal shapes of sympetaleous flowers: the interplay between growth, geometry and elasticity
Martine Ben Amar, Martin Michael Müller, Miguel Trejo 
The growth of a thin elastic sheet imposes constraints on its geometry such as its Gaussian curvature K_{G}.
In this paper, we construct the shapes of sympetalous bellshaped flowers with a constant Gaussian curvature. Minimizing the bending energies
of both the petal and the veins, we are able to predict quantitatively the global shape of these flowers. We discuss two toy problems
where the Gaussian curvature is either negative or positive. In the former case the axisymmetric pseudosphere turns out to mimic the correct
shape before edge curling; in the latter case, singularities of the mathematical surface coincide with strong veins. Using a variational
minimization of the elastic energy, we find that the optimal number for the veins is either four, five or six, a number which is deceptively
close to the statistics on real flowers in nature.
Fermer
Plus d'infos
New J. Phys., 14: 085014, 2012. Choisi pour les Highlights of 2012.
 Morphogenesis of membrane invaginations in spherical confinement
Osman Kahraman, Norbert Stoop, Martin Michael Müller 
Résumé
Plus d'infos
Europhys. Lett., 97(6): 68008, 2012. Cf. aussi arXiv:1201.2518.
 Conical instabilities on paper
Jemal Guven, Martin Michael Müller, Pablo VázquezMontejo 
Résumé
Plus d'infos
J. Phys. A: Math. Theor., 45(1): 015203, 2012. Cf. aussi arXiv:1107.5008.
 Interfacemediated interactions: Entropic forces of curved membranes
Pierre Gosselin, Hervé Mohrbach, Martin Michael Müller 
Résumé
Plus d'infos
Phys. Rev. E, 83(5): 051921, 2011. Cf. aussi arXiv:1011.1221.
 SelfContact and Instabilities in the Anisotropic Growth of Elastic Membranes
Norbert Stoop, Falk K. Wittel, Martine Ben Amar, Martin Michael Müller, Hans J. Herrmann 
We investigate the morphology of thin discs and rings growing in circumferential direction. Recent analytical results suggest that this growth produces symmetric excess cones (econes). We study the stability of such solutions considering selfcontact and bending stress. We show that, contrary to what was assumed in previous analytical solutions, beyond a critical growth factor, no symmetric econe solution is energetically minimal any more. Instead, we obtain skewed econe solutions having lower energy, characterized by a skewness angle and repetitive spiral winding with increasing growth. These results are generalized to discs with varying thickness and rings with holes of different radii.
Fermer
Plus d'infos
Phys. Rev. Lett., 105(6): 068101, 2010. Cf. aussi arXiv:1007.1871.
 Cell Model Approach to Membrane Mediated Protein Interactions
Martin Michael Müller, Markus Deserno 
Résumé
Plus d'infos
Prog. Theor. Phys. Suppl., 184: pp. 351363, 2010.
 Hamiltonian formulation of surfaces with constant Gaussian curvature
Miguel Trejo, Martine Ben Amar, Martin Michael Müller 
Dirac's method for constrained Hamiltonian systems is used to describe surfaces of constant Gaussian curvature. A geometrical free energy, for which these surfaces are equilibrium states, is introduced and interpreted as an action. An equilibrium surface can then be generated by the evolution of a closed space curve.
Since the underlying action depends on second derivatives, the velocity of the curve and its conjugate momentum must be included in the set of phase space variables. Furthermore, the action is linear in the acceleration of the curve and possesses a local symmetryreparametrization invariancewhich implies primary constraints in the canonical formalism. These constraints are incorporated into the Hamiltonian through Lagrange multiplier functions, that are identified as the components of the acceleration of the curve. The formulation leads to four first order partial differential equations, one for each canonical variable.
With the appropriate choice of parametrization only one of these equations has to be solved to obtain the surface which is swept out by the evolving space curve. To illustrate the formalism, several evolutions of pseudospherical surfaces are discussed.
Fermer
Plus d'infos
J. Phys. A: Math. Theor., 42(42): 425204, 2009.
 Local Membrane Mechanics of PoreSpanning Bilayers
Ingo Mey, Milena Stephan, Eva K. Schmitt, Martin Michael Müller, Martine Ben Amar, Claudia Steinem, Andreas Janshoff 
Résumé
Plus d'infos
J. Am. Chem. Soc., 131(20): pp. 70317039, 2009.
 Elasticity Mapping of PoreSuspending Native Cell Membranes
Bärbel Lorenz, Ingo Mey, Siegfried Steltenkamp, Tamir Fine, Christina Rommel, Martin Michael Müller, Alexander Maiwald, Joachim Wegener, Claudia Steinem, Andreas Janshoff 
The mechanics of cellular membranes is governed by a nonequilibrium composite framework
consisting of the semiflexible filamentous cytoskeleton and extracellular matrix proteins linked to
the lipid bilayer. While elasticity information of plasma membranes has mainly been obtained from
whole cell analysis, techniques that allow to address local mechanical properties of cell
membranes are desirable to learn how their lipid and protein composition is reflected in the elastic
behavior on local length scales. Here, we introduce an approach based on basolateral
membranes of polar epithelial MadinDarby canine kidney (MDCK) II cells, prepared on a highly ordered porous substrate that
allows elastic mapping on a submicrometer length scale. A strong correlation between the
density of actin filaments and the measured membrane elasticity is found. Spatially resolved indentation experiments carried out with atomic force and fluorescence microscope permit to relate the supramolecular structure to the elasticity of cellular membranes. It is shown that the elastic response of the porespanning cell membranes is governed by the local bending modules rather than the lateral tension.
Fermer
Plus d'infos
Small, 5(7): pp. 832838, 2009.
 Conical Defects in Growing Sheets
Martin Michael Müller, Martine Ben Amar, Jemal Guven 
A growing or shrinking disc will adopt a conical shape, its intrinsic geometry characterized by a surplus angle φ_{e} at the apex. If growth is slow, the cone will find its equilibrium. Whereas this is trivial if φ_{e}≤0, the disc can fold into one of a discrete infinite number of states if φ_{e} is positive. We construct these states in the regime where bending dominates, determine their energies and how stress is distributed in them. For each state a critical value of φ_{e} is identified beyond which the cone touches itself. Before this occurs, all states are stable; the ground state has twofold symmetry.
Fermer
Plus d'infos
Phys. Rev. Lett., 101(15): 156104, 2008. Cf. aussi arXiv:0807.1814.
 How paper folds: bending with local constraints
Jemal Guven, Martin Michael Müller 
A variational framework is introduced to describe how a surface bends when it is subject to local constraints on its geometry. This framework is applied to describe the patterns of a folded sheet of paper. The unstretchability of paper implies a constraint on the surface metric; bending is penalized by an energy quadratic in mean curvature. The local Lagrange multipliers enforcing the constraint are identified with a conserved tangential stress that couples to the extrinsic curvature of the sheet. The framework is illustrated by examining the deformation of a flat sheet into a generalized cone.
Fermer
Plus d'infos
J. Phys. A: Math. Theor., 41(5): 055203, 2008. Cf. aussi arXiv:0712.0978.
 Contact lines for fluid surface adhesion
Markus Deserno, Martin Michael Müller, Jemal Guven 
Résumé
Plus d'infos
Phys. Rev. E, 76(1): 011605, 2007. Cf. aussi condmat/0703019. Choisi pour le Virtual Journal of Biological Physics Research.
 Balancing torques in membranemediated interactions: Exact results and
numerical illustrations
Martin Michael Müller, Markus Deserno, Jemal Guven 
Torques on interfaces can be described by a divergencefree tensor
which is fully encoded in the geometry. This tensor consists of two
terms, one originating in the couple of the stress, the other capturing
an intrinsic contribution due to curvature. In analogy to the description
of forces in terms of a stress tensor, the torque on a particle can be
expressed as a line integral along any contour surrounding the particle.
Interactions between particles mediated by a fluid membrane are studied
within this framework. In particular, torque balance places a strong
constraint on the shape of the membrane. Symmetric twoparticle
configurations admit simple analytical expressions which are valid
in the fully nonlinear regime; in particular, the problem may be
solved exactly in the case of two membranebound parallel cylinders.
This apparently simple system provides some flavor of the remarkably
subtle nonlinear behavior associated with membranemediated interactions.
Fermer
Plus d'infos
Phys. Rev. E, 76(1): 011921, 2007. Cf. aussi condmat/0702340. Choisi pour le Virtual Journal of Biological Physics Research.
 Aggregation and vesiculation of membrane proteins by curvaturemediated
interactions
Benedict J. Reynwar, Gregoria Illya, Vagelis A. Harmandaris, Martin Michael Müller, Kurt Kremer, Markus Deserno 
Résumé
Plus d'infos
Nature 447(7143): pp. 461464, 2007.
 How to determine local elastic properties of lipid bilayer membranes
from atomicforcemicroscope measurements: A theoretical analysis
Davood Norouzi, Martin Michael Müller, Markus Deserno 
Résumé
Plus d'infos
Phys. Rev. E, 74(6): 061914, 2006. Cf. aussi condmat/0602662. Choisi pour le Virtual Journal of Biological Physics Research.
 Mechanical Properties of PoreSpanning Lipid Bilayers Probed by Atomic Force Microscopy
Siegfried Steltenkamp, Martin Michael Müller, Markus Deserno, Christian Hennesthal, Claudia Steinem, Andreas Janshoff 
Résumé
Plus d'infos
Biophys. J., 91(1): pp. 217226, 2006.
 Interface mediated interactions between particles  a geometrical approach
Martin Michael Müller, Markus Deserno, Jemal Guven 
Résumé
Plus d'infos
Phys. Rev. E, 72(6): 061407, 2005. Cf. aussi condmat/0506019. Choisi pour le Virtual Journal of Biological Physics Research.
 Geometry of surfacemediated interactions
Martin Michael Müller, Markus Deserno, Jemal Guven 
Résumé
Plus d'infos
Europhys. Lett., 69(3): pp. 482488, 2005. Cf. aussi condmat/0409043.
2. Livres

New Trends in the Physics and Mechanics of Biological Systems
Lecture Notes of the Les Houches Summer School, vol. 92 (Oxford University Press, 2011),
éd. par Martine Ben Amar, Alain Goriely, Martin Michael Müller et Leticia Cugliandolo.
Chapitre 9 :
The physics of the cell membrane
Martin Michael Müller et Martine Ben Amar.
3. Mémoires

Theoretical examinations of interface mediated interactions between colloidal particles,
mémoire (2004).

Theoretical studies of fluid membrane mechanics, thèse de doctorat (2007).

Symmetry breaking in bioelasticity, thèse d'habilitation à diriger des recherches (2015).
