Géométrie dans la Nature
 
 
 
Accueil
Recherches
Vie
Publications
Liens
Coordonees
 


 
 

Publications (en anglais)

  1. Articles scientifiques
  2. Livres
  3. Mémoires

 

Voir aussi les profiles sur Publons, Orcid ou Google Scholar.

 

 

1. Articles scientifiques

  •  

    Conformational Space of the Translocation Domain of Botulinum Toxin: Atomistic Modeling and Mesoscopic Description of the Coiled-Coil Helix Bundle

    Alexandre Delort, Grazia Cottone, Thérèse E. Malliavin, Martin Michael Müller

    Résumé     

    Int. J. Mol. Sci., 25: 2481, 2024.

     


  •  

    Flexoelectric fluid membrane vesicles in spherical confinement

    Niloufar Abtahi, Lila Bouzar, Nadia Saidi-Amroun, Martin Michael Müller

    Résumé     Plus d'infos

    EPL, 131(1): 18001, 2020. Cf. aussi arXiv:2006.04475.

     


  •  

    Isometric bending requires local constraints on free edges

    Jemal Guven, Martin Michael Müller, Pablo Vázquez-Montejo

    Résumé     Plus d'infos

    Math. Mech. Solids, 24: 4051, 2019. Cf. aussi arXiv:1904.05855.

     


  •  

    Helical Superstructure of Intermediate Filaments

    Lila Bouzar, Martin Michael Müller, René Messina, Bernd Nöding, Sarah Köster, Hervé Mohrbach, Igor M. Kulić

    Résumé     Plus d'infos

    Phys. Rev. Lett., 122: 098101, 2019. Cf. aussi arXiv:1803.04691.

     


  •  

    Vesicle dynamics in confined steady and harmonically modulated Poiseuille flows

    Zakaria Boujja, Chaouqi Misbah, Hamid Ez-Zahraouy, Abdelilah Benyoussef, Thomas John, Christian Wagner, Martin Michael Müller

    Résumé     

    Phys. Rev. E, 98: 043111, 2018. Cf. aussi arXiv:1810.04500.

     


  •  

    Confining a fluid membrane vesicle of toroidal topology in an adhesive hard sphere

    Lila Bouzar, Ferhat Menas, Martin Michael Müller

    Résumé     Plus d'infos

    IOP Conf. Series: MSE, 186: 012021, 2017.

     


  •  

    Squeezed helical elastica

    Lila Bouzar, Martin Michael Müller, Pierre Gosselin, Igor M. Kulić, Hervé Mohrbach

    We theoretically study the conformations of a helical semi-flexible filament confined to a two-dimensional surface. This squeezed helix exhibits a variety of unexpected shapes resembling circles, waves or spirals depending on the material parameters. We explore the conformation space in detail and show that the shapes can be understood as the mutual elastic interaction of conformational quasi-particles. Our theoretical results are potentially useful to determine the material parameters of such helical filaments in an experimental setting.

     Fermer     Plus d'infos

    Eur. Phys. J. E, 39: 114, 2016. Cf. aussi arXiv:1606.03611.

     


  •  

    How bio-filaments twist membranes

    Julien Fierling, Albert Johner, Igor M. Kulić, Hervé Mohrbach, Martin Michael Müller

    Résumé     

    Soft Matter, 12: 5747, 2016.

     


  •  

    Toroidal membrane vesicles in spherical confinement

    Lila Bouzar, Ferhat Menas, Martin Michael Müller

    Résumé     Plus d'infos

    Phys. Rev. E, 92: 032721, 2015. Cf. aussi arXiv:1509.00765.

     


  •  

    Non-linear buckling and symmetry breaking of a soft elastic sheet sliding on a cylindrical substrate

    Norbert Stoop, Martin Michael Müller

    We consider the axial compression of a thin sheet wrapped around a rigid cylindrical substrate. In contrast to the wrinkling-to-fold transitions exhibited in similar systems, we find that the sheet always buckles into a single symmetric fold, while periodic solutions are unstable. Upon further compression, the solution breaks symmetry and stabilizes into a recumbent fold. Using linear analysis and numerics, we theoretically predict the buckling force and energy as a function of the compressive displacement. We compare our theory to experiments employing cylindrical neoprene sheets and find remarkably good agreement.

     Fermer     Plus d'infos

    Int. J. Non-Linear Mech., 75: 115, 2015. Cf. aussi arXiv:1503.05030.

     


  •  

    Crunching Biofilament Rings

    Julien Fierling, Martin Michael Müller, Hervé Mohrbach, Albert Johner, Igor M. Kulić

    Résumé     Plus d'infos

    Europhys. Lett., 107(6): 68002, 2014. Cf. aussi arXiv:1408.6787.

     


  •  

    Confotronic dynamics of tubular filaments

    Osman Kahraman, Hervé Mohrbach, Martin Michael Müller, Igor M. Kulić

    Tubular lattices are ubiquitous in nature and technology. Microtubules and nanotubes of all kinds act as important pillars of biological cells and the man-made nano-world. We show that when prestress is introduced in such structures, localized conformational quasiparticles emerge and govern the collective shape dynamics of the lattice. When coupled via cooperative interactions these quasiparticles form larger-scale quasipolymer superstructures exhibiting collective dynamic modes and giving rise to a hallmark behavior radically different from semiflexible beams.

     Fermer     Plus d'infos

    Soft Matter, 10(16): pp. 2836-2847, 2014. Cf. aussi arXiv:1312.3106.

     


  •  

    Whirling skirts and rotating cones

    Jemal Guven, J. A. Hanna, Martin Michael Müller

    Steady, dihedrally symmetric patterns with sharp peaks may be observed on a spinning skirt, lagging behind the material flow of the fabric. These qualitative features are captured with a minimal model of traveling waves on an inextensible, flexible, generalized-conical sheet rotating about a fixed axis. Conservation laws are used to reduce the dynamics to a quadrature describing a particle in a three-parameter family of potentials. One parameter is associated with the stress in the sheet, aNoether is the current associated with rotational invariance, and the third is a Rossby number which indicates the relative strength of Coriolis forces. Solutions are quantized by enforcing a topology appropriate to a skirt and a particular choice of dihedral symmetry. A perturbative analysis of nearly axisymmetric cones shows that Coriolis effects are essential in establishing skirt-like solutions. Fully non-linear solutions with three-fold symmetry are presented which bear a suggestive resemblance to the observed patterns.

     Fermer     

    New J. Phys., 15: 113055, 2013. Cf. aussi arXiv:1306.2619.

     


  •  

    Myotubularin and PtdIns3P remodel the sarcoplasmic reticulum in muscle in vivo

    Leonela Amoasii, Karim Hnia, Gaëtan Chicanne, Andreas Brech, Belinda Simone Cowling, Martin Michael Müller, Yannick Schwab, Pascale Koebel, Arnaud Ferry, Bernard Payrastre, Jocelyn Laporte

    Résumé     

    J. Cell Sci., 126(8): 1806, 2013.

     


  •  

    Dipoles in thin sheets

    Jemal Guven, J. A. Hanna, Osman Kahraman, Martin Michael Müller

    Résumé     Plus d'infos

    Eur. Phys. J. E, 36: 106, 2013. Cf. aussi arXiv:1212.3262.

     


  •  

    Fluid membrane vesicles in confinement

    Osman Kahraman, Norbert Stoop, Martin Michael Müller

    Résumé     Plus d'infos

    New J. Phys., 14: 095021, 2012.

     


  •  

    Petal shapes of sympetaleous flowers: the interplay between growth, geometry and elasticity

    Martine Ben Amar, Martin Michael Müller, Miguel Trejo

    Résumé     Plus d'infos

    New J. Phys., 14: 085014, 2012. Choisi pour les Highlights of 2012.

     


  •  

    Morphogenesis of membrane invaginations in spherical confinement

    Osman Kahraman, Norbert Stoop, Martin Michael Müller

    Résumé     Plus d'infos

    Europhys. Lett., 97(6): 68008, 2012. Cf. aussi arXiv:1201.2518.

     


  •  

    Conical instabilities on paper

    Jemal Guven, Martin Michael Müller, Pablo Vázquez-Montejo

    Résumé     Plus d'infos

    J. Phys. A: Math. Theor., 45(1): 015203, 2012. Cf. aussi arXiv:1107.5008.

     


  •  

    Interface-mediated interactions: Entropic forces of curved membranes

    Pierre Gosselin, Hervé Mohrbach, Martin Michael Müller

    Résumé     Plus d'infos

    Phys. Rev. E, 83(5): 051921, 2011. Cf. aussi arXiv:1011.1221.

     


  •  

    Self-Contact and Instabilities in the Anisotropic Growth of Elastic Membranes

    Norbert Stoop, Falk K. Wittel, Martine Ben Amar, Martin Michael Müller, Hans J. Herrmann

    We investigate the morphology of thin discs and rings growing in circumferential direction. Recent analytical results suggest that this growth produces symmetric excess cones (e-cones). We study the stability of such solutions considering self-contact and bending stress. We show that, contrary to what was assumed in previous analytical solutions, beyond a critical growth factor, no symmetric e-cone solution is energetically minimal any more. Instead, we obtain skewed e-cone solutions having lower energy, characterized by a skewness angle and repetitive spiral winding with increasing growth. These results are generalized to discs with varying thickness and rings with holes of different radii.

     Fermer     Plus d'infos

    Phys. Rev. Lett., 105(6): 068101, 2010. Cf. aussi arXiv:1007.1871.

     


  •  

    Cell Model Approach to Membrane Mediated Protein Interactions

    Martin Michael Müller, Markus Deserno

    Résumé     Plus d'infos

    Prog. Theor. Phys. Suppl., 184: pp. 351-363, 2010.

     


  •  

    Hamiltonian formulation of surfaces with constant Gaussian curvature

    Miguel Trejo, Martine Ben Amar, Martin Michael Müller

    Résumé     Plus d'infos

    J. Phys. A: Math. Theor., 42(42): 425204, 2009.

     


  •  

    Local Membrane Mechanics of Pore-Spanning Bilayers

    Ingo Mey, Milena Stephan, Eva K. Schmitt, Martin Michael Müller, Martine Ben Amar, Claudia Steinem, Andreas Janshoff

    Résumé     Plus d'infos

    J. Am. Chem. Soc., 131(20): pp. 7031-7039, 2009.

     


  •  

    Elasticity Mapping of Pore-Suspending Native Cell Membranes

    Bärbel Lorenz, Ingo Mey, Siegfried Steltenkamp, Tamir Fine, Christina Rommel, Martin Michael Müller, Alexander Maiwald, Joachim Wegener, Claudia Steinem, Andreas Janshoff

    The mechanics of cellular membranes is governed by a non-equilibrium composite framework consisting of the semiflexible filamentous cytoskeleton and extracellular matrix proteins linked to the lipid bilayer. While elasticity information of plasma membranes has mainly been obtained from whole cell analysis, techniques that allow to address local mechanical properties of cell membranes are desirable to learn how their lipid and protein composition is reflected in the elastic behavior on local length scales. Here, we introduce an approach based on basolateral membranes of polar epithelial Madin-Darby canine kidney (MDCK) II cells, prepared on a highly ordered porous substrate that allows elastic mapping on a submicrometer length scale. A strong correlation between the density of actin filaments and the measured membrane elasticity is found. Spatially resolved indentation experiments carried out with atomic force and fluorescence microscope permit to relate the supramolecular structure to the elasticity of cellular membranes. It is shown that the elastic response of the pore-spanning cell membranes is governed by the local bending modules rather than the lateral tension.

     Fermer     Plus d'infos

    Small, 5(7): pp. 832-838, 2009.

     


  •  

    Conical Defects in Growing Sheets

    Martin Michael Müller, Martine Ben Amar, Jemal Guven

    A growing or shrinking disc will adopt a conical shape, its intrinsic geometry characterized by a surplus angle φe at the apex. If growth is slow, the cone will find its equilibrium. Whereas this is trivial if φe≤0, the disc can fold into one of a discrete infinite number of states if φe is positive. We construct these states in the regime where bending dominates, determine their energies and how stress is distributed in them. For each state a critical value of φe is identified beyond which the cone touches itself. Before this occurs, all states are stable; the ground state has twofold symmetry.

     Fermer     Plus d'infos

    Phys. Rev. Lett., 101(15): 156104, 2008. Cf. aussi arXiv:0807.1814.

     


  •  

    How paper folds: bending with local constraints

    Jemal Guven, Martin Michael Müller

    A variational framework is introduced to describe how a surface bends when it is subject to local constraints on its geometry. This framework is applied to describe the patterns of a folded sheet of paper. The unstretchability of paper implies a constraint on the surface metric; bending is penalized by an energy quadratic in mean curvature. The local Lagrange multipliers enforcing the constraint are identified with a conserved tangential stress that couples to the extrinsic curvature of the sheet. The framework is illustrated by examining the deformation of a flat sheet into a generalized cone.

     Fermer     Plus d'infos

    J. Phys. A: Math. Theor., 41(5): 055203, 2008. Cf. aussi arXiv:0712.0978.

     


  •  

    Contact lines for fluid surface adhesion

    Markus Deserno, Martin Michael Müller, Jemal Guven

    Résumé     Plus d'infos

    Phys. Rev. E, 76(1): 011605, 2007. Cf. aussi cond-mat/0703019.
    Choisi pour le Virtual Journal of Biological Physics Research.

     


  •  

    Balancing torques in membrane-mediated interactions: Exact results and numerical illustrations

    Martin Michael Müller, Markus Deserno, Jemal Guven

    Torques on interfaces can be described by a divergence-free tensor which is fully encoded in the geometry. This tensor consists of two terms, one originating in the couple of the stress, the other capturing an intrinsic contribution due to curvature. In analogy to the description of forces in terms of a stress tensor, the torque on a particle can be expressed as a line integral along any contour surrounding the particle. Interactions between particles mediated by a fluid membrane are studied within this framework. In particular, torque balance places a strong constraint on the shape of the membrane. Symmetric two-particle configurations admit simple analytical expressions which are valid in the fully nonlinear regime; in particular, the problem may be solved exactly in the case of two membrane-bound parallel cylinders. This apparently simple system provides some flavor of the remarkably subtle nonlinear behavior associated with membrane-mediated interactions.

     Fermer     Plus d'infos

    Phys. Rev. E, 76(1): 011921, 2007. Cf. aussi cond-mat/0702340.
    Choisi pour le Virtual Journal of Biological Physics Research.

     


  •  

    Aggregation and vesiculation of membrane proteins by curvature-mediated interactions

    Benedict J. Reynwar, Gregoria Illya, Vagelis A. Harmandaris, Martin Michael Müller, Kurt Kremer, Markus Deserno

    Résumé     Plus d'infos

    Nature 447(7143): pp. 461-464, 2007.

     


  •  

    How to determine local elastic properties of lipid bilayer membranes from atomic-force-microscope measurements: A theoretical analysis

    Davood Norouzi, Martin Michael Müller, Markus Deserno

    Résumé     Plus d'infos

    Phys. Rev. E, 74(6): 061914, 2006. Cf. aussi cond-mat/0602662.
    Choisi pour le Virtual Journal of Biological Physics Research.

     


  •  

    Mechanical Properties of Pore-Spanning Lipid Bilayers Probed by Atomic Force Microscopy

    Siegfried Steltenkamp, Martin Michael Müller, Markus Deserno, Christian Hennesthal, Claudia Steinem, Andreas Janshoff

    Résumé     Plus d'infos

    Biophys. J., 91(1): pp. 217-226, 2006.

     


  •  

    Interface mediated interactions between particles -- a geometrical approach

    Martin Michael Müller, Markus Deserno, Jemal Guven

    Résumé     Plus d'infos

    Phys. Rev. E, 72(6): 061407, 2005. Cf. aussi cond-mat/0506019.
    Choisi pour le Virtual Journal of Biological Physics Research.

     


  •  

    Geometry of surface-mediated interactions

    Martin Michael Müller, Markus Deserno, Jemal Guven

    Résumé     Plus d'infos

    Europhys. Lett., 69(3): pp. 482-488, 2005. Cf. aussi cond-mat/0409043.

     


 

 

2. Livres

 

  • New Trends in the Physics and Mechanics of Biological Systems
    Lecture Notes of the Les Houches Summer School, vol. 92 (Oxford University Press, 2011),
    éd. par Martine Ben Amar, Alain Goriely, Martin Michael Müller et Leticia Cugliandolo.

    Chapitre 9 :
    The physics of the cell membrane
    Martin Michael Müller et Martine Ben Amar.

 

 


 

 

3. Mémoires

  • Theoretical examinations of interface mediated interactions between colloidal particles, mémoire (2004).
  •  

  • Theoretical studies of fluid membrane mechanics, thèse de doctorat (2007).


  • Symmetry breaking in bioelasticity, thèse d'habilitation à diriger des recherches (2015).

 

 

 
     

 

     © Martin Michael Müller