Publications (en anglais)

Articles scientifiques

Livres

Mémoires
Voir aussi les profiles sur
Publons,
Orcid ou
Google Scholar.
1. Articles scientifiques
 Flexoelectric fluid membrane vesicles in spherical confinement
Niloufar Abtahi, Lila Bouzar, Nadia SaidiAmroun, Martin Michael Müller 
Résumé
Plus d'infos
EPL, 131(1): 18001, 2020. Cf. aussi arXiv:2006.04475.
 Isometric bending requires local constraints on free edges
Jemal Guven, Martin Michael Müller, Pablo VázquezMontejo 
While the shape equations describing the equilibrium of an unstretchable thin sheet that is free
to bend are known, the boundary conditions that supplement these equations on free edges have remained elusive.
Intuitively, unstretchability is captured by a constraint on the metric within the bulk. Naïvely one would then
guess that this constraint is enough to ensure that the deformations determining the boundary conditions on these
edges respect the isometry constraint. If matters were this simple, unfortunately, it would imply unbalanced torques
(as well as forces) along the edge unless manifestly unphysical constraints are met by the boundary geometry. In this
article, we identify the source of the problem: not only the local arclength but also the geodesic curvature need to
be constrained explicitly on all free edges. We derive the boundary conditions which follow. In contrast to conventional
wisdom, there is no need to introduce boundary layers. This framework is applied to isolated conical defects, both
with deficit as well, but more briefly, as surplus angles. Using these boundary conditions, we show that the lateral
tension within a circular cone of fixed radius is equal but opposite to the radial compression, and independent of
the deficit angle itself. We proceed to examine the effect of an oblique outer edge on this cone perturbatively
demonstrating that both the correction to the geometry as well as the stress distribution in the cone kicks in at
second order in the eccentricity of the edge.
Fermer
Plus d'infos
Math. Mech. Solids, 24: 4051, 2019. Cf. aussi arXiv:1904.05855.
 Helical Superstructure of Intermediate Filaments
Lila Bouzar, Martin Michael Müller, René Messina, Bernd Nöding, Sarah Köster, Hervé Mohrbach, Igor M. Kulić 
Résumé
Plus d'infos
Phys. Rev. Lett., 122: 098101, 2019. Cf. aussi arXiv:1803.04691.
 Vesicle dynamics in confined steady and harmonically modulated Poiseuille flows
Zakaria Boujja, Chaouqi Misbah, Hamid EzZahraouy, Abdelilah Benyoussef, Thomas John, Christian Wagner, Martin Michael Müller 
We present a numerical study of the timedependent motion of a membrane vesicle in a
channel under an imposed flow. In a Poiseuille flow the shape of the vesicle depends on the flow strength,
the mechanical properties of the membrane, and the width of the channel. In a wide parameter region, the
emerging snaking shape shows an oscillatory motion like a swimmer flagella even though the flow is
stationary. We quantify this behavior by the amplitude and frequency of the oscillations of the vesicle's
center of mass. The influence of an amplitude modulation of the imposed flow on the dynamics and shape of
the snaking vesicle is also investigated. We find that this modulationwhen sufficiently smallinduces
a modulation in amplitude and frequency of the center of mass of the snaking vesicle. For large
modulation amplitudes transitions to static shapes are observed.
Fermer
Phys. Rev. E, 98: 043111, 2018. Cf. aussi arXiv:1810.04500.
 Confining a fluid membrane vesicle of toroidal topology in an adhesive hard sphere
Lila Bouzar, Ferhat Menas, Martin Michael Müller 
We discuss how the equilibrium shapes of a confined toroidal fluid membrane vesicle
change when an adhesion between membrane and confining sphere is taken into account. The case without adhesion
was studied in Ref. [1]. Different types of solution were found and assembled in a phase diagram as a function of area
and reduced volume of the membrane. Depending on the degree of confinement the vesicle is either free, in contact along
a circle (contactcircle solutions) or on a surface (contactarea solutions). All solutions without adhesion are updown symmetric.
When the container is adhesive, the phase diagram is altered and new kinds of solution without updown symmetry are found.
For increasing values of adhesion the region of contactcircle solutions shrinks until it vanishes completely from the phase diagram.
Fermer
Plus d'infos
IOP Conf. Series: MSE, 186: 012021, 2017.
 Squeezed helical elastica
Lila Bouzar, Martin Michael Müller, Pierre Gosselin, Igor M. Kulić, Hervé Mohrbach 
Résumé
Plus d'infos
Eur. Phys. J. E, 39: 114, 2016. Cf. aussi arXiv:1606.03611.
 How biofilaments twist membranes
Julien Fierling, Albert Johner, Igor M. Kulić, Hervé Mohrbach, Martin Michael Müller 
Résumé
Soft Matter, 12: 5747, 2016.
 Toroidal membrane vesicles in spherical confinement
Lila Bouzar, Ferhat Menas, Martin Michael Müller 
Résumé
Plus d'infos
Phys. Rev. E, 92: 032721, 2015. Cf. aussi arXiv:1509.00765.
 Nonlinear buckling and symmetry breaking of a soft elastic sheet sliding on a cylindrical substrate
Norbert Stoop, Martin Michael Müller 
Résumé
Plus d'infos
Int. J. NonLinear Mech., 75: 115, 2015. Cf. aussi arXiv:1503.05030.
 Crunching Biofilament Rings
Julien Fierling, Martin Michael Müller, Hervé Mohrbach, Albert Johner, Igor M. Kulić 
We discuss a curious example for the collective mechanical behavior of coupled nonlinear monomer units entrapped in a circular filament. Within a simple model we elucidate how multistability of monomer units and exponentially large degeneracy of the filament's ground state emerge as a collective feature of the closed filament. Surprisingly, increasing the monomer frustration, i.e., the bending prestrain within the circular filament, leads to a conformational softening of the system. The phenomenon, that we term polymorphic crunching, is discussed and applied to a possible scenario for membrane tube deformation by switchable dynamin or FtsZ filaments. We find an important role of cooperative interunit interaction for efficient ring induced membrane fission.
Fermer
Plus d'infos
Europhys. Lett., 107(6): 68002, 2014. Cf. aussi arXiv:1408.6787.
 Confotronic dynamics of tubular filaments
Osman Kahraman, Hervé Mohrbach, Martin Michael Müller, Igor M. Kulić 
Résumé
Plus d'infos
Soft Matter, 10(16): pp. 28362847, 2014. Cf. aussi arXiv:1312.3106.
 Whirling skirts and rotating cones
Jemal Guven, J. A. Hanna, Martin Michael Müller 
Résumé
New J. Phys., 15: 113055, 2013. Cf. aussi arXiv:1306.2619.
 Myotubularin and PtdIns3P remodel the sarcoplasmic reticulum in muscle in vivo
Leonela Amoasii, Karim Hnia, Gaëtan Chicanne, Andreas Brech, Belinda Simone Cowling, Martin Michael Müller, Yannick Schwab, Pascale Koebel, Arnaud Ferry, Bernard Payrastre, Jocelyn Laporte 
Résumé
J. Cell Sci., 126(8): 1806, 2013.
 Dipoles in thin sheets
Jemal Guven, J. A. Hanna, Osman Kahraman, Martin Michael Müller 
Résumé
Plus d'infos
Eur. Phys. J. E, 36: 106, 2013. Cf. aussi arXiv:1212.3262.
 Fluid membrane vesicles in confinement
Osman Kahraman, Norbert Stoop, Martin Michael Müller 
Résumé
Plus d'infos
New J. Phys., 14: 095021, 2012.
 Petal shapes of sympetaleous flowers: the interplay between growth, geometry and elasticity
Martine Ben Amar, Martin Michael Müller, Miguel Trejo 
The growth of a thin elastic sheet imposes constraints on its geometry such as its Gaussian curvature K_{G}.
In this paper, we construct the shapes of sympetalous bellshaped flowers with a constant Gaussian curvature. Minimizing the bending energies
of both the petal and the veins, we are able to predict quantitatively the global shape of these flowers. We discuss two toy problems
where the Gaussian curvature is either negative or positive. In the former case the axisymmetric pseudosphere turns out to mimic the correct
shape before edge curling; in the latter case, singularities of the mathematical surface coincide with strong veins. Using a variational
minimization of the elastic energy, we find that the optimal number for the veins is either four, five or six, a number which is deceptively
close to the statistics on real flowers in nature.
Fermer
Plus d'infos
New J. Phys., 14: 085014, 2012. Choisi pour les Highlights of 2012.
 Morphogenesis of membrane invaginations in spherical confinement
Osman Kahraman, Norbert Stoop, Martin Michael Müller 
Résumé
Plus d'infos
Europhys. Lett., 97(6): 68008, 2012. Cf. aussi arXiv:1201.2518.
 Conical instabilities on paper
Jemal Guven, Martin Michael Müller, Pablo VázquezMontejo 
Résumé
Plus d'infos
J. Phys. A: Math. Theor., 45(1): 015203, 2012. Cf. aussi arXiv:1107.5008.
 Interfacemediated interactions: Entropic forces of curved membranes
Pierre Gosselin, Hervé Mohrbach, Martin Michael Müller 
Particles embedded in a fluctuating interface experience forces and torques
mediated by the deformations and by the thermal fluctuations of the medium.
Considering a system of two cylinders bound to a fluid membrane we show that
the entropic contribution enhances the curvaturemediated repulsion between
the two cylinders. This is contrary to the usual attractive Casimir force in
the absence of curvaturemediated interactions. For a large distance between
the cylinders, we retrieve the renormalization of the surface tension of a
flat membrane due to thermal fluctuations.
Fermer
Plus d'infos
Phys. Rev. E, 83(5): 051921, 2011. Cf. aussi arXiv:1011.1221.
 SelfContact and Instabilities in the Anisotropic Growth of Elastic Membranes
Norbert Stoop, Falk K. Wittel, Martine Ben Amar, Martin Michael Müller, Hans J. Herrmann 
Résumé
Plus d'infos
Phys. Rev. Lett., 105(6): 068101, 2010. Cf. aussi arXiv:1007.1871.
 Cell Model Approach to Membrane Mediated Protein Interactions
Martin Michael Müller, Markus Deserno 
Résumé
Plus d'infos
Prog. Theor. Phys. Suppl., 184: pp. 351363, 2010.
 Hamiltonian formulation of surfaces with constant Gaussian curvature
Miguel Trejo, Martine Ben Amar, Martin Michael Müller 
Dirac's method for constrained Hamiltonian systems is used to describe surfaces of constant Gaussian curvature. A geometrical free energy, for which these surfaces are equilibrium states, is introduced and interpreted as an action. An equilibrium surface can then be generated by the evolution of a closed space curve.
Since the underlying action depends on second derivatives, the velocity of the curve and its conjugate momentum must be included in the set of phase space variables. Furthermore, the action is linear in the acceleration of the curve and possesses a local symmetryreparametrization invariancewhich implies primary constraints in the canonical formalism. These constraints are incorporated into the Hamiltonian through Lagrange multiplier functions, that are identified as the components of the acceleration of the curve. The formulation leads to four first order partial differential equations, one for each canonical variable.
With the appropriate choice of parametrization only one of these equations has to be solved to obtain the surface which is swept out by the evolving space curve. To illustrate the formalism, several evolutions of pseudospherical surfaces are discussed.
Fermer
Plus d'infos
J. Phys. A: Math. Theor., 42(42): 425204, 2009.
 Local Membrane Mechanics of PoreSpanning Bilayers
Ingo Mey, Milena Stephan, Eva K. Schmitt, Martin Michael Müller, Martine Ben Amar, Claudia Steinem, Andreas Janshoff 
The mechanical behavior of lipid bilayers spanning the pores of highly ordered porous silicon substrates was studied by local indentation experiments as a function of surface functionalization, lipid composition, solvent content, indentation velocity, and pore radius. Solventcontaining nanoblack lipid membranes (nanoBLMs) as well as solventfree porespanning bilayers were imaged by fluorescence and atomic force microscopy prior to force curve acquisition, which allows distinguishing between membranecovered and uncovered pores. Force indentation curves on porespanning bilayers attached to functionalized hydrophobic porous silicon substrates reveal a predominately linear response that is mainly attributed to prestress in the membranes. This is in agreement with the observation that indentation leads to membrane lysis well below 5% area dilatation. However, membrane bending and lateral tension dominates over
prestress and stretching if solventfree supported membranes obtained from spreading giant liposomes on hydrophilic porous silicon are indented.
Fermer
Plus d'infos
J. Am. Chem. Soc., 131(20): pp. 70317039, 2009.
 Elasticity Mapping of PoreSuspending Native Cell Membranes
Bärbel Lorenz, Ingo Mey, Siegfried Steltenkamp, Tamir Fine, Christina Rommel, Martin Michael Müller, Alexander Maiwald, Joachim Wegener, Claudia Steinem, Andreas Janshoff 
The mechanics of cellular membranes is governed by a nonequilibrium composite framework
consisting of the semiflexible filamentous cytoskeleton and extracellular matrix proteins linked to
the lipid bilayer. While elasticity information of plasma membranes has mainly been obtained from
whole cell analysis, techniques that allow to address local mechanical properties of cell
membranes are desirable to learn how their lipid and protein composition is reflected in the elastic
behavior on local length scales. Here, we introduce an approach based on basolateral
membranes of polar epithelial MadinDarby canine kidney (MDCK) II cells, prepared on a highly ordered porous substrate that
allows elastic mapping on a submicrometer length scale. A strong correlation between the
density of actin filaments and the measured membrane elasticity is found. Spatially resolved indentation experiments carried out with atomic force and fluorescence microscope permit to relate the supramolecular structure to the elasticity of cellular membranes. It is shown that the elastic response of the porespanning cell membranes is governed by the local bending modules rather than the lateral tension.
Fermer
Plus d'infos
Small, 5(7): pp. 832838, 2009.
 Conical Defects in Growing Sheets
Martin Michael Müller, Martine Ben Amar, Jemal Guven 
Résumé
Plus d'infos
Phys. Rev. Lett., 101(15): 156104, 2008. Cf. aussi arXiv:0807.1814.
 How paper folds: bending with local constraints
Jemal Guven, Martin Michael Müller 
Résumé
Plus d'infos
J. Phys. A: Math. Theor., 41(5): 055203, 2008. Cf. aussi arXiv:0712.0978.
 Contact lines for fluid surface adhesion
Markus Deserno, Martin Michael Müller, Jemal Guven 
Résumé
Plus d'infos
Phys. Rev. E, 76(1): 011605, 2007. Cf. aussi condmat/0703019. Choisi pour le Virtual Journal of Biological Physics Research.
 Balancing torques in membranemediated interactions: Exact results and
numerical illustrations
Martin Michael Müller, Markus Deserno, Jemal Guven 
Résumé
Plus d'infos
Phys. Rev. E, 76(1): 011921, 2007. Cf. aussi condmat/0702340. Choisi pour le Virtual Journal of Biological Physics Research.
 Aggregation and vesiculation of membrane proteins by curvaturemediated
interactions
Benedict J. Reynwar, Gregoria Illya, Vagelis A. Harmandaris, Martin Michael Müller, Kurt Kremer, Markus Deserno 
Résumé
Plus d'infos
Nature 447(7143): pp. 461464, 2007.
 How to determine local elastic properties of lipid bilayer membranes
from atomicforcemicroscope measurements: A theoretical analysis
Davood Norouzi, Martin Michael Müller, Markus Deserno 
Measurements with an atomic force microscope (AFM) offer a direct way to
probe elastic properties of lipid bilayer membranes locally: provided
the underlying stressstrain relation is known, material parameters such as
surface tension or bending rigidity may be deduced.
In a recent experiment a porespanning membrane was poked with an AFM tip,
yielding a linear behavior of the forceindentation curves. A theoretical
model for this case is presented here which describes these curves in the
framework of Helfrich theory. The linear behavior of the measurements is
reproduced if one neglects the influence of adhesion between tip and membrane.
Including it via an adhesion balance changes the situation significantly:
forcedistance curves cease to be linear, hysteresis and nonzero detachment
forces can show up. The characteristics of this rich scenario are discussed
in detail in this article.
Fermer
Plus d'infos
Phys. Rev. E, 74(6): 061914, 2006. Cf. aussi condmat/0602662. Choisi pour le Virtual Journal of Biological Physics Research.
 Mechanical Properties of PoreSpanning Lipid Bilayers Probed by Atomic Force Microscopy
Siegfried Steltenkamp, Martin Michael Müller, Markus Deserno, Christian Hennesthal, Claudia Steinem, Andreas Janshoff 
Résumé
Plus d'infos
Biophys. J., 91(1): pp. 217226, 2006.
 Interface mediated interactions between particles  a geometrical approach
Martin Michael Müller, Markus Deserno, Jemal Guven 
Résumé
Plus d'infos
Phys. Rev. E, 72(6): 061407, 2005. Cf. aussi condmat/0506019. Choisi pour le Virtual Journal of Biological Physics Research.
 Geometry of surfacemediated interactions
Martin Michael Müller, Markus Deserno, Jemal Guven 
Résumé
Plus d'infos
Europhys. Lett., 69(3): pp. 482488, 2005. Cf. aussi condmat/0409043.
2. Livres

New Trends in the Physics and Mechanics of Biological Systems
Lecture Notes of the Les Houches Summer School, vol. 92 (Oxford University Press, 2011),
éd. par Martine Ben Amar, Alain Goriely, Martin Michael Müller et Leticia Cugliandolo.
Chapitre 9 :
The physics of the cell membrane
Martin Michael Müller et Martine Ben Amar.
3. Mémoires

Theoretical examinations of interface mediated interactions between colloidal particles,
mémoire (2004).

Theoretical studies of fluid membrane mechanics, thèse de doctorat (2007).

Symmetry breaking in bioelasticity, thèse d'habilitation à diriger des recherches (2015).
