Publications (en anglais)

Articles scientifiques

Livres

Mémoires
Voir aussi les profiles sur
Publons,
Orcid ou
Google Scholar.
1. Articles scientifiques
 Flexoelectric fluid membrane vesicles in spherical confinement
Niloufar Abtahi, Lila Bouzar, Nadia SaidiAmroun, Martin Michael Müller 
Résumé
Plus d'infos
EPL, 131(1): 18001, 2020. Cf. aussi arXiv:2006.04475.
 Isometric bending requires local constraints on free edges
Jemal Guven, Martin Michael Müller, Pablo VázquezMontejo 
Résumé
Plus d'infos
Math. Mech. Solids, 24: 4051, 2019. Cf. aussi arXiv:1904.05855.
 Helical Superstructure of Intermediate Filaments
Lila Bouzar, Martin Michael Müller, René Messina, Bernd Nöding, Sarah Köster, Hervé Mohrbach, Igor M. Kulić 
Résumé
Plus d'infos
Phys. Rev. Lett., 122: 098101, 2019. Cf. aussi arXiv:1803.04691.
 Vesicle dynamics in confined steady and harmonically modulated Poiseuille flows
Zakaria Boujja, Chaouqi Misbah, Hamid EzZahraouy, Abdelilah Benyoussef, Thomas John, Christian Wagner, Martin Michael Müller 
We present a numerical study of the timedependent motion of a membrane vesicle in a
channel under an imposed flow. In a Poiseuille flow the shape of the vesicle depends on the flow strength,
the mechanical properties of the membrane, and the width of the channel. In a wide parameter region, the
emerging snaking shape shows an oscillatory motion like a swimmer flagella even though the flow is
stationary. We quantify this behavior by the amplitude and frequency of the oscillations of the vesicle's
center of mass. The influence of an amplitude modulation of the imposed flow on the dynamics and shape of
the snaking vesicle is also investigated. We find that this modulationwhen sufficiently smallinduces
a modulation in amplitude and frequency of the center of mass of the snaking vesicle. For large
modulation amplitudes transitions to static shapes are observed.
Fermer
Phys. Rev. E, 98: 043111, 2018. Cf. aussi arXiv:1810.04500.
 Confining a fluid membrane vesicle of toroidal topology in an adhesive hard sphere
Lila Bouzar, Ferhat Menas, Martin Michael Müller 
Résumé
Plus d'infos
IOP Conf. Series: MSE, 186: 012021, 2017.
 Squeezed helical elastica
Lila Bouzar, Martin Michael Müller, Pierre Gosselin, Igor M. Kulić, Hervé Mohrbach 
Résumé
Plus d'infos
Eur. Phys. J. E, 39: 114, 2016. Cf. aussi arXiv:1606.03611.
 How biofilaments twist membranes
Julien Fierling, Albert Johner, Igor M. Kulić, Hervé Mohrbach, Martin Michael Müller 
Résumé
Soft Matter, 12: 5747, 2016.
 Toroidal membrane vesicles in spherical confinement
Lila Bouzar, Ferhat Menas, Martin Michael Müller 
Résumé
Plus d'infos
Phys. Rev. E, 92: 032721, 2015. Cf. aussi arXiv:1509.00765.
 Nonlinear buckling and symmetry breaking of a soft elastic sheet sliding on a cylindrical substrate
Norbert Stoop, Martin Michael Müller 
Résumé
Plus d'infos
Int. J. NonLinear Mech., 75: 115, 2015. Cf. aussi arXiv:1503.05030.
 Crunching Biofilament Rings
Julien Fierling, Martin Michael Müller, Hervé Mohrbach, Albert Johner, Igor M. Kulić 
We discuss a curious example for the collective mechanical behavior of coupled nonlinear monomer units entrapped in a circular filament. Within a simple model we elucidate how multistability of monomer units and exponentially large degeneracy of the filament's ground state emerge as a collective feature of the closed filament. Surprisingly, increasing the monomer frustration, i.e., the bending prestrain within the circular filament, leads to a conformational softening of the system. The phenomenon, that we term polymorphic crunching, is discussed and applied to a possible scenario for membrane tube deformation by switchable dynamin or FtsZ filaments. We find an important role of cooperative interunit interaction for efficient ring induced membrane fission.
Fermer
Plus d'infos
Europhys. Lett., 107(6): 68002, 2014. Cf. aussi arXiv:1408.6787.
 Confotronic dynamics of tubular filaments
Osman Kahraman, Hervé Mohrbach, Martin Michael Müller, Igor M. Kulić 
Résumé
Plus d'infos
Soft Matter, 10(16): pp. 28362847, 2014. Cf. aussi arXiv:1312.3106.
 Whirling skirts and rotating cones
Jemal Guven, J. A. Hanna, Martin Michael Müller 
Résumé
New J. Phys., 15: 113055, 2013. Cf. aussi arXiv:1306.2619.
 Myotubularin and PtdIns3P remodel the sarcoplasmic reticulum in muscle in vivo
Leonela Amoasii, Karim Hnia, Gaëtan Chicanne, Andreas Brech, Belinda Simone Cowling, Martin Michael Müller, Yannick Schwab, Pascale Koebel, Arnaud Ferry, Bernard Payrastre, Jocelyn Laporte 
Résumé
J. Cell Sci., 126(8): 1806, 2013.
 Dipoles in thin sheets
Jemal Guven, J. A. Hanna, Osman Kahraman, Martin Michael Müller 
Résumé
Plus d'infos
Eur. Phys. J. E, 36: 106, 2013. Cf. aussi arXiv:1212.3262.
 Fluid membrane vesicles in confinement
Osman Kahraman, Norbert Stoop, Martin Michael Müller 
Résumé
Plus d'infos
New J. Phys., 14: 095021, 2012.
 Petal shapes of sympetaleous flowers: the interplay between growth, geometry and elasticity
Martine Ben Amar, Martin Michael Müller, Miguel Trejo 
The growth of a thin elastic sheet imposes constraints on its geometry such as its Gaussian curvature K_{G}.
In this paper, we construct the shapes of sympetalous bellshaped flowers with a constant Gaussian curvature. Minimizing the bending energies
of both the petal and the veins, we are able to predict quantitatively the global shape of these flowers. We discuss two toy problems
where the Gaussian curvature is either negative or positive. In the former case the axisymmetric pseudosphere turns out to mimic the correct
shape before edge curling; in the latter case, singularities of the mathematical surface coincide with strong veins. Using a variational
minimization of the elastic energy, we find that the optimal number for the veins is either four, five or six, a number which is deceptively
close to the statistics on real flowers in nature.
Fermer
Plus d'infos
New J. Phys., 14: 085014, 2012. Choisi pour les Highlights of 2012.
 Morphogenesis of membrane invaginations in spherical confinement
Osman Kahraman, Norbert Stoop, Martin Michael Müller 
Résumé
Plus d'infos
Europhys. Lett., 97(6): 68008, 2012. Cf. aussi arXiv:1201.2518.
 Conical instabilities on paper
Jemal Guven, Martin Michael Müller, Pablo VázquezMontejo 
The stability of the fundamental defects of an unstretchable flat sheet is examined.
This involves expanding the bending energy to second order in deformations about the
defect. The modes of deformation occur as eigenstates of a fourthorder linear differential
operator. Unstretchability places a global linear constraint on these modes. Conical
defects with a surplus angle exhibit an infinite number of states. If this angle is below a
critical value, these states possess an nfold symmetry labeled by an integer, n ≥ 2. A
nonlinear stability analysis shows that the 2fold ground state is stable, whereas excited
states possess 2(n  2) unstable modes which come in even and odd pairs.
Fermer
Plus d'infos
J. Phys. A: Math. Theor., 45(1): 015203, 2012. Cf. aussi arXiv:1107.5008.
 Interfacemediated interactions: Entropic forces of curved membranes
Pierre Gosselin, Hervé Mohrbach, Martin Michael Müller 
Particles embedded in a fluctuating interface experience forces and torques
mediated by the deformations and by the thermal fluctuations of the medium.
Considering a system of two cylinders bound to a fluid membrane we show that
the entropic contribution enhances the curvaturemediated repulsion between
the two cylinders. This is contrary to the usual attractive Casimir force in
the absence of curvaturemediated interactions. For a large distance between
the cylinders, we retrieve the renormalization of the surface tension of a
flat membrane due to thermal fluctuations.
Fermer
Plus d'infos
Phys. Rev. E, 83(5): 051921, 2011. Cf. aussi arXiv:1011.1221.
 SelfContact and Instabilities in the Anisotropic Growth of Elastic Membranes
Norbert Stoop, Falk K. Wittel, Martine Ben Amar, Martin Michael Müller, Hans J. Herrmann 
We investigate the morphology of thin discs and rings growing in circumferential direction. Recent analytical results suggest that this growth produces symmetric excess cones (econes). We study the stability of such solutions considering selfcontact and bending stress. We show that, contrary to what was assumed in previous analytical solutions, beyond a critical growth factor, no symmetric econe solution is energetically minimal any more. Instead, we obtain skewed econe solutions having lower energy, characterized by a skewness angle and repetitive spiral winding with increasing growth. These results are generalized to discs with varying thickness and rings with holes of different radii.
Fermer
Plus d'infos
Phys. Rev. Lett., 105(6): 068101, 2010. Cf. aussi arXiv:1007.1871.
 Cell Model Approach to Membrane Mediated Protein Interactions
Martin Michael Müller, Markus Deserno 
Résumé
Plus d'infos
Prog. Theor. Phys. Suppl., 184: pp. 351363, 2010.
 Hamiltonian formulation of surfaces with constant Gaussian curvature
Miguel Trejo, Martine Ben Amar, Martin Michael Müller 
Dirac's method for constrained Hamiltonian systems is used to describe surfaces of constant Gaussian curvature. A geometrical free energy, for which these surfaces are equilibrium states, is introduced and interpreted as an action. An equilibrium surface can then be generated by the evolution of a closed space curve.
Since the underlying action depends on second derivatives, the velocity of the curve and its conjugate momentum must be included in the set of phase space variables. Furthermore, the action is linear in the acceleration of the curve and possesses a local symmetryreparametrization invariancewhich implies primary constraints in the canonical formalism. These constraints are incorporated into the Hamiltonian through Lagrange multiplier functions, that are identified as the components of the acceleration of the curve. The formulation leads to four first order partial differential equations, one for each canonical variable.
With the appropriate choice of parametrization only one of these equations has to be solved to obtain the surface which is swept out by the evolving space curve. To illustrate the formalism, several evolutions of pseudospherical surfaces are discussed.
Fermer
Plus d'infos
J. Phys. A: Math. Theor., 42(42): 425204, 2009.
 Local Membrane Mechanics of PoreSpanning Bilayers
Ingo Mey, Milena Stephan, Eva K. Schmitt, Martin Michael Müller, Martine Ben Amar, Claudia Steinem, Andreas Janshoff 
The mechanical behavior of lipid bilayers spanning the pores of highly ordered porous silicon substrates was studied by local indentation experiments as a function of surface functionalization, lipid composition, solvent content, indentation velocity, and pore radius. Solventcontaining nanoblack lipid membranes (nanoBLMs) as well as solventfree porespanning bilayers were imaged by fluorescence and atomic force microscopy prior to force curve acquisition, which allows distinguishing between membranecovered and uncovered pores. Force indentation curves on porespanning bilayers attached to functionalized hydrophobic porous silicon substrates reveal a predominately linear response that is mainly attributed to prestress in the membranes. This is in agreement with the observation that indentation leads to membrane lysis well below 5% area dilatation. However, membrane bending and lateral tension dominates over
prestress and stretching if solventfree supported membranes obtained from spreading giant liposomes on hydrophilic porous silicon are indented.
Fermer
Plus d'infos
J. Am. Chem. Soc., 131(20): pp. 70317039, 2009.
 Elasticity Mapping of PoreSuspending Native Cell Membranes
Bärbel Lorenz, Ingo Mey, Siegfried Steltenkamp, Tamir Fine, Christina Rommel, Martin Michael Müller, Alexander Maiwald, Joachim Wegener, Claudia Steinem, Andreas Janshoff 
Résumé
Plus d'infos
Small, 5(7): pp. 832838, 2009.
 Conical Defects in Growing Sheets
Martin Michael Müller, Martine Ben Amar, Jemal Guven 
Résumé
Plus d'infos
Phys. Rev. Lett., 101(15): 156104, 2008. Cf. aussi arXiv:0807.1814.
 How paper folds: bending with local constraints
Jemal Guven, Martin Michael Müller 
Résumé
Plus d'infos
J. Phys. A: Math. Theor., 41(5): 055203, 2008. Cf. aussi arXiv:0712.0978.
 Contact lines for fluid surface adhesion
Markus Deserno, Martin Michael Müller, Jemal Guven 
Résumé
Plus d'infos
Phys. Rev. E, 76(1): 011605, 2007. Cf. aussi condmat/0703019. Choisi pour le Virtual Journal of Biological Physics Research.
 Balancing torques in membranemediated interactions: Exact results and
numerical illustrations
Martin Michael Müller, Markus Deserno, Jemal Guven 
Résumé
Plus d'infos
Phys. Rev. E, 76(1): 011921, 2007. Cf. aussi condmat/0702340. Choisi pour le Virtual Journal of Biological Physics Research.
 Aggregation and vesiculation of membrane proteins by curvaturemediated
interactions
Benedict J. Reynwar, Gregoria Illya, Vagelis A. Harmandaris, Martin Michael Müller, Kurt Kremer, Markus Deserno 
Résumé
Plus d'infos
Nature 447(7143): pp. 461464, 2007.
 How to determine local elastic properties of lipid bilayer membranes
from atomicforcemicroscope measurements: A theoretical analysis
Davood Norouzi, Martin Michael Müller, Markus Deserno 
Résumé
Plus d'infos
Phys. Rev. E, 74(6): 061914, 2006. Cf. aussi condmat/0602662. Choisi pour le Virtual Journal of Biological Physics Research.
 Mechanical Properties of PoreSpanning Lipid Bilayers Probed by Atomic Force Microscopy
Siegfried Steltenkamp, Martin Michael Müller, Markus Deserno, Christian Hennesthal, Claudia Steinem, Andreas Janshoff 
We measure the elastic response of a freestanding lipid membrane to a local indentation by using an atomic force microscope. Starting point is a planar
goldcoated alumina substrate with a chemisorbed 3mercaptopropionic acid
monolayer displaying circular pores of very well defined and tunable size, over
which bilayers composed of N,N, dimethyl N,N, dioctadecylammonium bromide or
1,2  dioleoyl  3  trimethylammonium  propane chloride were spread.
Centrally indenting these 'nanodrums' with an atomic force microscope tip yields
forceindentation curves, which we quantitatively analyze by solving the
corresponding shape equations of continuum curvature elasticity. Since the
measured response depends in a known way on the system geometry (pore size, tip
radius) and on material parameters (bending modulus, lateral tension), this opens
the possibility to monitor local elastic properties of lipid membranes in a
wellcontrolled setting.
Fermer
Plus d'infos
Biophys. J., 91(1): pp. 217226, 2006.
 Interface mediated interactions between particles  a geometrical approach
Martin Michael Müller, Markus Deserno, Jemal Guven 
Particles bound to an interface interact because they deform its shape.
The stresses that result are fully encoded in the geometry and described
by a divergencefree surface stress tensor. This stress tensor can be
used to express the force on a particle as a line integral along any
conveniently chosen closed contour that surrounds the particle. The
resulting expression is exact (i.e., free of any 'smallness' assumptions)
and independent of the chosen surface parametrization. Additional surface
degrees of freedom, such as vector fields describing lipid tilt, are readily
included in this formalism. As an illustration, we derive the exact force
for several important surface Hamiltonians in various symmetric twoparticle
configurations in terms of the midplane geometry; its sign is evident in
certain interesting limits. Specializing to the linear regime, where the
shape can be analytically determined, these general expressions yield
forcedistance relations, several of which have originally been derived
by using an energy based approach.
Fermer
Plus d'infos
Phys. Rev. E, 72(6): 061407, 2005. Cf. aussi condmat/0506019. Choisi pour le Virtual Journal of Biological Physics Research.
 Geometry of surfacemediated interactions
Martin Michael Müller, Markus Deserno, Jemal Guven 
Résumé
Plus d'infos
Europhys. Lett., 69(3): pp. 482488, 2005. Cf. aussi condmat/0409043.
2. Livres

New Trends in the Physics and Mechanics of Biological Systems
Lecture Notes of the Les Houches Summer School, vol. 92 (Oxford University Press, 2011),
éd. par Martine Ben Amar, Alain Goriely, Martin Michael Müller et Leticia Cugliandolo.
Chapitre 9 :
The physics of the cell membrane
Martin Michael Müller et Martine Ben Amar.
3. Mémoires

Theoretical examinations of interface mediated interactions between colloidal particles,
mémoire (2004).

Theoretical studies of fluid membrane mechanics, thèse de doctorat (2007).

Symmetry breaking in bioelasticity, thèse d'habilitation à diriger des recherches (2015).
