Geometry in Nature
 
 
 
Home
Research
Vita
Publications
Links
Contact
 


 
 

Publications

  1. Articles in scientific journals
  2. Books
  3. Theses

 

See also profiles on Publons, Orcid or Google Scholar.

 

 

1. Articles in scientific journals

  •  

    Conformational Space of the Translocation Domain of Botulinum Toxin: Atomistic Modeling and Mesoscopic Description of the Coiled-Coil Helix Bundle

    Alexandre Delort, Grazia Cottone, Thérèse E. Malliavin, Martin Michael Müller

    Abstract     

    Int. J. Mol. Sci., 25: 2481, 2024.

     


  •  

    Flexoelectric fluid membrane vesicles in spherical confinement

    Niloufar Abtahi, Lila Bouzar, Nadia Saidi-Amroun, Martin Michael Müller

    The morphology of spherically confined flexoelectric fluid membrane vesicles in an ex- ternal uniform electric field is studied numerically. Due to the deformations induced by the confinement, the membrane becomes polarized resulting in an interaction with the external field. The equilibrium shapes of the vesicle without electric field can be clas- sified in a geometrical phase diagram as a function of scaled area and reduced volume [1, 2]. When the area of the membrane is only slightly larger than the area of the con- fining sphere, a single axisymmetric invagination appears. A non-vanishing electric field induces an additional elongation of the confined vesicle which is either perpendicular or parallel depending on the sign of the electric field parameter. Higher values of the surface area or the electric field parameter can reduce the symmetry of the system leading to more complex folding. We present the resulting shapes and show that transition lines are shifted in the presence of an electric field. The obtained folding patterns could be of interest for biophysical and technological applications alike.

     Reduce     Read more

    EPL, 131(1): 18001, 2020. See also arXiv:2006.04475.

     


  •  

    Isometric bending requires local constraints on free edges

    Jemal Guven, Martin Michael Müller, Pablo Vázquez-Montejo

    While the shape equations describing the equilibrium of an unstretchable thin sheet that is free to bend are known, the boundary conditions that supplement these equations on free edges have remained elusive. Intuitively, unstretchability is captured by a constraint on the metric within the bulk. Naïvely one would then guess that this constraint is enough to ensure that the deformations determining the boundary conditions on these edges respect the isometry constraint. If matters were this simple, unfortunately, it would imply unbalanced torques (as well as forces) along the edge unless manifestly unphysical constraints are met by the boundary geometry. In this article, we identify the source of the problem: not only the local arc-length but also the geodesic curvature need to be constrained explicitly on all free edges. We derive the boundary conditions which follow. In contrast to conventional wisdom, there is no need to introduce boundary layers. This framework is applied to isolated conical defects, both with deficit as well, but more briefly, as surplus angles. Using these boundary conditions, we show that the lateral tension within a circular cone of fixed radius is equal but opposite to the radial compression, and independent of the deficit angle itself. We proceed to examine the effect of an oblique outer edge on this cone perturbatively demonstrating that both the correction to the geometry as well as the stress distribution in the cone kicks in at second order in the eccentricity of the edge.

     Reduce     Read more

    Math. Mech. Solids, 24: 4051, 2019. See also arXiv:1904.05855.

     


  •  

    Helical Superstructure of Intermediate Filaments

    Lila Bouzar, Martin Michael Müller, René Messina, Bernd Nöding, Sarah Köster, Hervé Mohrbach, Igor M. Kulić

    Abstract     Read more

    Phys. Rev. Lett., 122: 098101, 2019. See also arXiv:1803.04691.

     


  •  

    Vesicle dynamics in confined steady and harmonically modulated Poiseuille flows

    Zakaria Boujja, Chaouqi Misbah, Hamid Ez-Zahraouy, Abdelilah Benyoussef, Thomas John, Christian Wagner, Martin Michael Müller

    Abstract     

    Phys. Rev. E, 98: 043111, 2018. See also arXiv:1810.04500.

     


  •  

    Confining a fluid membrane vesicle of toroidal topology in an adhesive hard sphere

    Lila Bouzar, Ferhat Menas, Martin Michael Müller

    Abstract     Read more

    IOP Conf. Series: MSE, 186: 012021, 2017.

     


  •  

    Squeezed helical elastica

    Lila Bouzar, Martin Michael Müller, Pierre Gosselin, Igor M. Kulić, Hervé Mohrbach

    Abstract     Read more

    Eur. Phys. J. E, 39: 114, 2016. See also arXiv:1606.03611.

     


  •  

    How bio-filaments twist membranes

    Julien Fierling, Albert Johner, Igor M. Kulić, Hervé Mohrbach, Martin Michael Müller

    Abstract     

    Soft Matter, 12: 5747, 2016.

     


  •  

    Toroidal membrane vesicles in spherical confinement

    Lila Bouzar, Ferhat Menas, Martin Michael Müller

    We investigate the morphology of a toroidal fluid membrane vesicle confined inside a spherical container. The equilibrium shapes are assembled in a geometrical phase diagram as a function of scaled area and reduced volume of the membrane. For small area the vesicle can adopt its free form. When increasing the area, the membrane cannot avoid contact and touches the confining sphere along a circular contact line, which extends to a zone of contact for higher area. The elastic energies of the equilibrium shapes are compared to those of their confined counterparts of spherical topology to predict under which conditions a topology change is favored energetically.

     Reduce     Read more

    Phys. Rev. E, 92: 032721, 2015. See also arXiv:1509.00765.

     


  •  

    Non-linear buckling and symmetry breaking of a soft elastic sheet sliding on a cylindrical substrate

    Norbert Stoop, Martin Michael Müller

    Abstract     Read more

    Int. J. Non-Linear Mech., 75: 115, 2015. See also arXiv:1503.05030.

     


  •  

    Crunching Biofilament Rings

    Julien Fierling, Martin Michael Müller, Hervé Mohrbach, Albert Johner, Igor M. Kulić

    We discuss a curious example for the collective mechanical behavior of coupled non-linear monomer units entrapped in a circular filament. Within a simple model we elucidate how multistability of monomer units and exponentially large degeneracy of the filament's ground state emerge as a collective feature of the closed filament. Surprisingly, increasing the monomer frustration, i.e., the bending prestrain within the circular filament, leads to a conformational softening of the system. The phenomenon, that we term polymorphic crunching, is discussed and applied to a possible scenario for membrane tube deformation by switchable dynamin or FtsZ filaments. We find an important role of cooperative inter-unit interaction for efficient ring induced membrane fission.

     Reduce     Read more

    Europhys. Lett., 107(6): 68002, 2014. See also arXiv:1408.6787.

     


  •  

    Confotronic dynamics of tubular filaments

    Osman Kahraman, Hervé Mohrbach, Martin Michael Müller, Igor M. Kulić

    Abstract     Read more

    Soft Matter, 10(16): pp. 2836-2847, 2014. See also arXiv:1312.3106.

     


  •  

    Whirling skirts and rotating cones

    Jemal Guven, J. A. Hanna, Martin Michael Müller

    Abstract     

    New J. Phys., 15: 113055, 2013. See also arXiv:1306.2619.

     


  •  

    Myotubularin and PtdIns3P remodel the sarcoplasmic reticulum in muscle in vivo

    Leonela Amoasii, Karim Hnia, Gaëtan Chicanne, Andreas Brech, Belinda Simone Cowling, Martin Michael Müller, Yannick Schwab, Pascale Koebel, Arnaud Ferry, Bernard Payrastre, Jocelyn Laporte

    Abstract     

    J. Cell Sci., 126(8): 1806, 2013.

     


  •  

    Dipoles in thin sheets

    Jemal Guven, J. A. Hanna, Osman Kahraman, Martin Michael Müller

    Abstract     Read more

    Eur. Phys. J. E, 36: 106, 2013. See also arXiv:1212.3262.

     


  •  

    Fluid membrane vesicles in confinement

    Osman Kahraman, Norbert Stoop, Martin Michael Müller

    Abstract     Read more

    New J. Phys., 14: 095021, 2012.

     


  •  

    Petal shapes of sympetaleous flowers: the interplay between growth, geometry and elasticity

    Martine Ben Amar, Martin Michael Müller, Miguel Trejo

    Abstract     Read more

    New J. Phys., 14: 085014, 2012. Also featured in the Highlights of 2012.

     


  •  

    Morphogenesis of membrane invaginations in spherical confinement

    Osman Kahraman, Norbert Stoop, Martin Michael Müller

    Abstract     Read more

    Europhys. Lett., 97(6): 68008, 2012. See also arXiv:1201.2518.

     


  •  

    Conical instabilities on paper

    Jemal Guven, Martin Michael Müller, Pablo Vázquez-Montejo

    Abstract     Read more

    J. Phys. A: Math. Theor., 45(1): 015203, 2012. See also arXiv:1107.5008.

     


  •  

    Interface-mediated interactions: Entropic forces of curved membranes

    Pierre Gosselin, Hervé Mohrbach, Martin Michael Müller

    Abstract     Read more

    Phys. Rev. E, 83(5): 051921, 2011. See also arXiv:1011.1221.

     


  •  

    Self-Contact and Instabilities in the Anisotropic Growth of Elastic Membranes

    Norbert Stoop, Falk K. Wittel, Martine Ben Amar, Martin Michael Müller, Hans J. Herrmann

    We investigate the morphology of thin discs and rings growing in circumferential direction. Recent analytical results suggest that this growth produces symmetric excess cones (e-cones). We study the stability of such solutions considering self-contact and bending stress. We show that, contrary to what was assumed in previous analytical solutions, beyond a critical growth factor, no symmetric e-cone solution is energetically minimal any more. Instead, we obtain skewed e-cone solutions having lower energy, characterized by a skewness angle and repetitive spiral winding with increasing growth. These results are generalized to discs with varying thickness and rings with holes of different radii.

     Reduce     Read more

    Phys. Rev. Lett., 105(6): 068101, 2010. See also arXiv:1007.1871.

     


  •  

    Cell Model Approach to Membrane Mediated Protein Interactions

    Martin Michael Müller, Markus Deserno

    Membrane-deforming proteins can interact through the curvature fields they create. In the case of many such proteins a cell model approach can be used to calculate the energy per protein and predict, whether it would lead to phase segregation or bud-formation. Using covariant differential geometry exact results are derived for the lateral pressure in terms of geometric properties at the cell boundary. Numerical solutions of the exact shape equations in the highly nonlinear regime are found and it is seen that both phase segregation and bud formation can occur.

     Reduce     Read more

    Prog. Theor. Phys. Suppl., 184: pp. 351-363, 2010.

     


  •  

    Hamiltonian formulation of surfaces with constant Gaussian curvature

    Miguel Trejo, Martine Ben Amar, Martin Michael Müller

    Abstract     Read more

    J. Phys. A: Math. Theor., 42(42): 425204, 2009.

     


  •  

    Local Membrane Mechanics of Pore-Spanning Bilayers

    Ingo Mey, Milena Stephan, Eva K. Schmitt, Martin Michael Müller, Martine Ben Amar, Claudia Steinem, Andreas Janshoff

    Abstract     Read more

    J. Am. Chem. Soc., 131(20): pp. 7031-7039, 2009.

     


  •  

    Elasticity Mapping of Pore-Suspending Native Cell Membranes

    Bärbel Lorenz, Ingo Mey, Siegfried Steltenkamp, Tamir Fine, Christina Rommel, Martin Michael Müller, Alexander Maiwald, Joachim Wegener, Claudia Steinem, Andreas Janshoff

    Abstract     Read more

    Small, 5(7): pp. 832-838, 2009.

     


  •  

    Conical Defects in Growing Sheets

    Martin Michael Müller, Martine Ben Amar, Jemal Guven

    Abstract     Read more

    Phys. Rev. Lett., 101(15): 156104, 2008. See also arXiv:0807.1814.

     


  •  

    How paper folds: bending with local constraints

    Jemal Guven, Martin Michael Müller

    Abstract     Read more

    J. Phys. A: Math. Theor., 41(5): 055203, 2008. See also arXiv:0712.0978.

     


  •  

    Contact lines for fluid surface adhesion

    Markus Deserno, Martin Michael Müller, Jemal Guven

    When a fluid surface adheres to a substrate, the location of the contact line adjusts in order to minimize the overall energy. This adhesion balance implies boundary conditions which depend on the characteristic surface deformation energies. We develop a general geometrical framework within which these conditions can be systematically derived. We treat both adhesion to a rigid substrate as well as adhesion between two fluid surfaces, and illustrate our general results for several important Hamiltonians involving both curvature and curvature gradients. Some of these have previously been studied using very different techniques, others are to our knowledge new. What becomes clear in our approach is that, except for capillary phenomena, these boundary conditions are not the manifestation of a local force balance, even if the concept of surface stress is properly generalized. Hamiltonians containing higher order surface derivatives are not just sensitive to boundary translations but also notice changes in slope or even curvature. Both the necessity and the functional form of the corresponding additional contributions follow readily from our treatment.

     Reduce     Read more

    Phys. Rev. E, 76(1): 011605, 2007. See also cond-mat/0703019.
    Also featured in the Virtual Journal of Biological Physics Research.

     


  •  

    Balancing torques in membrane-mediated interactions: Exact results and numerical illustrations

    Martin Michael Müller, Markus Deserno, Jemal Guven

    Abstract     Read more

    Phys. Rev. E, 76(1): 011921, 2007. See also cond-mat/0702340.
    Also featured in the Virtual Journal of Biological Physics Research.

     


  •  

    Aggregation and vesiculation of membrane proteins by curvature-mediated interactions

    Benedict J. Reynwar, Gregoria Illya, Vagelis A. Harmandaris, Martin Michael Müller, Kurt Kremer, Markus Deserno

    Abstract     Read more

    Nature 447(7143): pp. 461-464, 2007.

     


  •  

    How to determine local elastic properties of lipid bilayer membranes from atomic-force-microscope measurements: A theoretical analysis

    Davood Norouzi, Martin Michael Müller, Markus Deserno

    Abstract     Read more

    Phys. Rev. E, 74(6): 061914, 2006. See also cond-mat/0602662.
    Also featured in the Virtual Journal of Biological Physics Research.

     


  •  

    Mechanical Properties of Pore-Spanning Lipid Bilayers Probed by Atomic Force Microscopy

    Siegfried Steltenkamp, Martin Michael Müller, Markus Deserno, Christian Hennesthal, Claudia Steinem, Andreas Janshoff

    Abstract     Read more

    Biophys. J., 91(1): pp. 217-226, 2006.

     


  •  

    Interface mediated interactions between particles -- a geometrical approach

    Martin Michael Müller, Markus Deserno, Jemal Guven

    Abstract     Read more

    Phys. Rev. E, 72(6): 061407, 2005. See also cond-mat/0506019.
    Also featured in the Virtual Journal of Biological Physics Research.

     


  •  

    Geometry of surface-mediated interactions

    Martin Michael Müller, Markus Deserno, Jemal Guven

    Abstract     Read more

    Europhys. Lett., 69(3): pp. 482-488, 2005. See also cond-mat/0409043.

     


 

 

2. Books

 

  • New Trends in the Physics and Mechanics of Biological Systems
    Lecture Notes of the Les Houches Summer School, vol. 92 (Oxford University Press, 2011),
    edited by Martine Ben Amar, Alain Goriely, Martin Michael Müller and Leticia Cugliandolo.

    Chapter 9:
    The physics of the cell membrane
    Martin Michael Müller and Martine Ben Amar.

 

 


 

 

3. Theses

  • Theoretical examinations of interface mediated interactions between colloidal particles, diploma thesis (2004).


  • Theoretical studies of fluid membrane mechanics, dissertation (2007).


  • Symmetry breaking in bioelasticity, habilitation thesis (2015).

 

 

 
     

 

     © Martin Michael Müller