Geometry in Nature
 
 
 
Home
Research
Vita
Publications
Links
Contact
 


 
 

Publications

  1. Articles in scientific journals
  2. Books
  3. Theses

 

See also profiles on Publons, Orcid or Google Scholar.

 

 

1. Articles in scientific journals

  •  

    Conformational Space of the Translocation Domain of Botulinum Toxin: Atomistic Modeling and Mesoscopic Description of the Coiled-Coil Helix Bundle

    Alexandre Delort, Grazia Cottone, Thérèse E. Malliavin, Martin Michael Müller

    Abstract     

    Int. J. Mol. Sci., 25: 2481, 2024.

     


  •  

    Flexoelectric fluid membrane vesicles in spherical confinement

    Niloufar Abtahi, Lila Bouzar, Nadia Saidi-Amroun, Martin Michael Müller

    The morphology of spherically confined flexoelectric fluid membrane vesicles in an ex- ternal uniform electric field is studied numerically. Due to the deformations induced by the confinement, the membrane becomes polarized resulting in an interaction with the external field. The equilibrium shapes of the vesicle without electric field can be clas- sified in a geometrical phase diagram as a function of scaled area and reduced volume [1, 2]. When the area of the membrane is only slightly larger than the area of the con- fining sphere, a single axisymmetric invagination appears. A non-vanishing electric field induces an additional elongation of the confined vesicle which is either perpendicular or parallel depending on the sign of the electric field parameter. Higher values of the surface area or the electric field parameter can reduce the symmetry of the system leading to more complex folding. We present the resulting shapes and show that transition lines are shifted in the presence of an electric field. The obtained folding patterns could be of interest for biophysical and technological applications alike.

     Reduce     Read more

    EPL, 131(1): 18001, 2020. See also arXiv:2006.04475.

     


  •  

    Isometric bending requires local constraints on free edges

    Jemal Guven, Martin Michael Müller, Pablo Vázquez-Montejo

    Abstract     Read more

    Math. Mech. Solids, 24: 4051, 2019. See also arXiv:1904.05855.

     


  •  

    Helical Superstructure of Intermediate Filaments

    Lila Bouzar, Martin Michael Müller, René Messina, Bernd Nöding, Sarah Köster, Hervé Mohrbach, Igor M. Kulić

    Intermediate filaments are the least explored among the large cytoskeletal elements. We show here that they display conformational anomalies in narrow microfluidic channels. Their unusual behavior can be understood as the consequence of a previously undetected, large scale helically curved superstructure. Confinement in a channel orders the otherwise soft, strongly fluctuating helical filaments and enhances their structural correlations, giving rise to experimentally detectable, strongly oscillating tangent correlation functions. We propose an explanation for the detected intrinsic curving phenomenon - an elastic shape instability that we call autocoiling. The mechanism involves self-induced filament buckling via a surface stress located at the outside of the cross-section. The results agree with ultrastructural findings and rationalize for the commonly observed looped intermediate filament shapes. Beyond curvature, explaining the molecular origin of the detected helical torsion remains an interesting challenge.

     Reduce     Read more

    Phys. Rev. Lett., 122: 098101, 2019. See also arXiv:1803.04691.

     


  •  

    Vesicle dynamics in confined steady and harmonically modulated Poiseuille flows

    Zakaria Boujja, Chaouqi Misbah, Hamid Ez-Zahraouy, Abdelilah Benyoussef, Thomas John, Christian Wagner, Martin Michael Müller

    Abstract     

    Phys. Rev. E, 98: 043111, 2018. See also arXiv:1810.04500.

     


  •  

    Confining a fluid membrane vesicle of toroidal topology in an adhesive hard sphere

    Lila Bouzar, Ferhat Menas, Martin Michael Müller

    Abstract     Read more

    IOP Conf. Series: MSE, 186: 012021, 2017.

     


  •  

    Squeezed helical elastica

    Lila Bouzar, Martin Michael Müller, Pierre Gosselin, Igor M. Kulić, Hervé Mohrbach

    Abstract     Read more

    Eur. Phys. J. E, 39: 114, 2016. See also arXiv:1606.03611.

     


  •  

    How bio-filaments twist membranes

    Julien Fierling, Albert Johner, Igor M. Kulić, Hervé Mohrbach, Martin Michael Müller

    Abstract     

    Soft Matter, 12: 5747, 2016.

     


  •  

    Toroidal membrane vesicles in spherical confinement

    Lila Bouzar, Ferhat Menas, Martin Michael Müller

    Abstract     Read more

    Phys. Rev. E, 92: 032721, 2015. See also arXiv:1509.00765.

     


  •  

    Non-linear buckling and symmetry breaking of a soft elastic sheet sliding on a cylindrical substrate

    Norbert Stoop, Martin Michael Müller

    Abstract     Read more

    Int. J. Non-Linear Mech., 75: 115, 2015. See also arXiv:1503.05030.

     


  •  

    Crunching Biofilament Rings

    Julien Fierling, Martin Michael Müller, Hervé Mohrbach, Albert Johner, Igor M. Kulić

    Abstract     Read more

    Europhys. Lett., 107(6): 68002, 2014. See also arXiv:1408.6787.

     


  •  

    Confotronic dynamics of tubular filaments

    Osman Kahraman, Hervé Mohrbach, Martin Michael Müller, Igor M. Kulić

    Abstract     Read more

    Soft Matter, 10(16): pp. 2836-2847, 2014. See also arXiv:1312.3106.

     


  •  

    Whirling skirts and rotating cones

    Jemal Guven, J. A. Hanna, Martin Michael Müller

    Abstract     

    New J. Phys., 15: 113055, 2013. See also arXiv:1306.2619.

     


  •  

    Myotubularin and PtdIns3P remodel the sarcoplasmic reticulum in muscle in vivo

    Leonela Amoasii, Karim Hnia, Gaëtan Chicanne, Andreas Brech, Belinda Simone Cowling, Martin Michael Müller, Yannick Schwab, Pascale Koebel, Arnaud Ferry, Bernard Payrastre, Jocelyn Laporte

    Abstract     

    J. Cell Sci., 126(8): 1806, 2013.

     


  •  

    Dipoles in thin sheets

    Jemal Guven, J. A. Hanna, Osman Kahraman, Martin Michael Müller

    Abstract     Read more

    Eur. Phys. J. E, 36: 106, 2013. See also arXiv:1212.3262.

     


  •  

    Fluid membrane vesicles in confinement

    Osman Kahraman, Norbert Stoop, Martin Michael Müller

    Abstract     Read more

    New J. Phys., 14: 095021, 2012.

     


  •  

    Petal shapes of sympetaleous flowers: the interplay between growth, geometry and elasticity

    Martine Ben Amar, Martin Michael Müller, Miguel Trejo

    Abstract     Read more

    New J. Phys., 14: 085014, 2012. Also featured in the Highlights of 2012.

     


  •  

    Morphogenesis of membrane invaginations in spherical confinement

    Osman Kahraman, Norbert Stoop, Martin Michael Müller

    We study the morphology of a fluid membrane in spherical confinement. When the area of the membrane is slightly larger than the area of the outer container, a single axisymmetric invagination is observed. For higher area, self-contact occurs: the invagination breaks symmetry and deforms into an ellipsoid-like shape connected to its outer part via a small slit. For even higher areas, a second invagination forms inside the original invagination. The folding patterns observed could constitute basic building blocks in the morphogenesis of biological tissues and organelles.

     Reduce     Read more

    Europhys. Lett., 97(6): 68008, 2012. See also arXiv:1201.2518.

     


  •  

    Conical instabilities on paper

    Jemal Guven, Martin Michael Müller, Pablo Vázquez-Montejo

    Abstract     Read more

    J. Phys. A: Math. Theor., 45(1): 015203, 2012. See also arXiv:1107.5008.

     


  •  

    Interface-mediated interactions: Entropic forces of curved membranes

    Pierre Gosselin, Hervé Mohrbach, Martin Michael Müller

    Abstract     Read more

    Phys. Rev. E, 83(5): 051921, 2011. See also arXiv:1011.1221.

     


  •  

    Self-Contact and Instabilities in the Anisotropic Growth of Elastic Membranes

    Norbert Stoop, Falk K. Wittel, Martine Ben Amar, Martin Michael Müller, Hans J. Herrmann

    Abstract     Read more

    Phys. Rev. Lett., 105(6): 068101, 2010. See also arXiv:1007.1871.

     


  •  

    Cell Model Approach to Membrane Mediated Protein Interactions

    Martin Michael Müller, Markus Deserno

    Abstract     Read more

    Prog. Theor. Phys. Suppl., 184: pp. 351-363, 2010.

     


  •  

    Hamiltonian formulation of surfaces with constant Gaussian curvature

    Miguel Trejo, Martine Ben Amar, Martin Michael Müller

    Abstract     Read more

    J. Phys. A: Math. Theor., 42(42): 425204, 2009.

     


  •  

    Local Membrane Mechanics of Pore-Spanning Bilayers

    Ingo Mey, Milena Stephan, Eva K. Schmitt, Martin Michael Müller, Martine Ben Amar, Claudia Steinem, Andreas Janshoff

    Abstract     Read more

    J. Am. Chem. Soc., 131(20): pp. 7031-7039, 2009.

     


  •  

    Elasticity Mapping of Pore-Suspending Native Cell Membranes

    Bärbel Lorenz, Ingo Mey, Siegfried Steltenkamp, Tamir Fine, Christina Rommel, Martin Michael Müller, Alexander Maiwald, Joachim Wegener, Claudia Steinem, Andreas Janshoff

    The mechanics of cellular membranes is governed by a non-equilibrium composite framework consisting of the semiflexible filamentous cytoskeleton and extracellular matrix proteins linked to the lipid bilayer. While elasticity information of plasma membranes has mainly been obtained from whole cell analysis, techniques that allow to address local mechanical properties of cell membranes are desirable to learn how their lipid and protein composition is reflected in the elastic behavior on local length scales. Here, we introduce an approach based on basolateral membranes of polar epithelial Madin-Darby canine kidney (MDCK) II cells, prepared on a highly ordered porous substrate that allows elastic mapping on a submicrometer length scale. A strong correlation between the density of actin filaments and the measured membrane elasticity is found. Spatially resolved indentation experiments carried out with atomic force and fluorescence microscope permit to relate the supramolecular structure to the elasticity of cellular membranes. It is shown that the elastic response of the pore-spanning cell membranes is governed by the local bending modules rather than the lateral tension.

     Reduce     Read more

    Small, 5(7): pp. 832-838, 2009.

     


  •  

    Conical Defects in Growing Sheets

    Martin Michael Müller, Martine Ben Amar, Jemal Guven

    A growing or shrinking disc will adopt a conical shape, its intrinsic geometry characterized by a surplus angle φe at the apex. If growth is slow, the cone will find its equilibrium. Whereas this is trivial if φe≤0, the disc can fold into one of a discrete infinite number of states if φe is positive. We construct these states in the regime where bending dominates, determine their energies and how stress is distributed in them. For each state a critical value of φe is identified beyond which the cone touches itself. Before this occurs, all states are stable; the ground state has twofold symmetry.

     Reduce     Read more

    Phys. Rev. Lett., 101(15): 156104, 2008. See also arXiv:0807.1814.

     


  •  

    How paper folds: bending with local constraints

    Jemal Guven, Martin Michael Müller

    Abstract     Read more

    J. Phys. A: Math. Theor., 41(5): 055203, 2008. See also arXiv:0712.0978.

     


  •  

    Contact lines for fluid surface adhesion

    Markus Deserno, Martin Michael Müller, Jemal Guven

    Abstract     Read more

    Phys. Rev. E, 76(1): 011605, 2007. See also cond-mat/0703019.
    Also featured in the Virtual Journal of Biological Physics Research.

     


  •  

    Balancing torques in membrane-mediated interactions: Exact results and numerical illustrations

    Martin Michael Müller, Markus Deserno, Jemal Guven

    Abstract     Read more

    Phys. Rev. E, 76(1): 011921, 2007. See also cond-mat/0702340.
    Also featured in the Virtual Journal of Biological Physics Research.

     


  •  

    Aggregation and vesiculation of membrane proteins by curvature-mediated interactions

    Benedict J. Reynwar, Gregoria Illya, Vagelis A. Harmandaris, Martin Michael Müller, Kurt Kremer, Markus Deserno

    Membrane remodelling plays an important role in cellular tasks such as endocytosis, vesiculation and protein sorting, and in the biogenesis of organelles such as the endoplasmic reticulum or the Golgi apparatus. It is well established that the remodelling process is aided by specialized proteins that can sense as well as create membrane curvature, and trigger tubulation when added to synthetic liposomes. Because the energy needed for such large-scale changes in membrane geometry significantly exceeds the binding energy between individual proteins and between protein and membrane, cooperative action is essential. It has recently been suggested that curvature-mediated attractive interactions could aid cooperation and complement the effects of specific binding events on membrane remodelling. But it is difficult to experimentally isolate curvature-mediated interactions from direct attractions between proteins. Moreover, approximate theories predict repulsion between isotropically curving proteins. Here we use coarse-grained membrane simulations to show that curvature-inducing model proteins adsorbed on lipid bilayer membranes can experience attractive interactions that arise purely as a result of membrane curvature. We find that once a minimal local bending is realized, the effect robustly drives protein cluster formation and subsequent transformation into vesicles with radii that correlate with the local curvature imprint. Owing to its universal nature, curvature-mediated attraction can operate even between proteins lacking any specific interactions, such as newly synthesized and still immature membrane proteins in the endoplasmic reticulum.

     Reduce     Read more

    Nature 447(7143): pp. 461-464, 2007.

     


  •  

    How to determine local elastic properties of lipid bilayer membranes from atomic-force-microscope measurements: A theoretical analysis

    Davood Norouzi, Martin Michael Müller, Markus Deserno

    Abstract     Read more

    Phys. Rev. E, 74(6): 061914, 2006. See also cond-mat/0602662.
    Also featured in the Virtual Journal of Biological Physics Research.

     


  •  

    Mechanical Properties of Pore-Spanning Lipid Bilayers Probed by Atomic Force Microscopy

    Siegfried Steltenkamp, Martin Michael Müller, Markus Deserno, Christian Hennesthal, Claudia Steinem, Andreas Janshoff

    Abstract     Read more

    Biophys. J., 91(1): pp. 217-226, 2006.

     


  •  

    Interface mediated interactions between particles -- a geometrical approach

    Martin Michael Müller, Markus Deserno, Jemal Guven

    Abstract     Read more

    Phys. Rev. E, 72(6): 061407, 2005. See also cond-mat/0506019.
    Also featured in the Virtual Journal of Biological Physics Research.

     


  •  

    Geometry of surface-mediated interactions

    Martin Michael Müller, Markus Deserno, Jemal Guven

    Abstract     Read more

    Europhys. Lett., 69(3): pp. 482-488, 2005. See also cond-mat/0409043.

     


 

 

2. Books

 

  • New Trends in the Physics and Mechanics of Biological Systems
    Lecture Notes of the Les Houches Summer School, vol. 92 (Oxford University Press, 2011),
    edited by Martine Ben Amar, Alain Goriely, Martin Michael Müller and Leticia Cugliandolo.

    Chapter 9:
    The physics of the cell membrane
    Martin Michael Müller and Martine Ben Amar.

 

 


 

 

3. Theses

  • Theoretical examinations of interface mediated interactions between colloidal particles, diploma thesis (2004).


  • Theoretical studies of fluid membrane mechanics, dissertation (2007).


  • Symmetry breaking in bioelasticity, habilitation thesis (2015).

 

 

 
     

 

     © Martin Michael Müller