Geometry in Nature
 
 
 
Home
Research
Vita
Publications
Links
Contact
 


 
 

Publications

  1. Articles in scientific journals
  2. Books
  3. Theses

 

See also profiles on Publons, Orcid or Google Scholar.

 

 

1. Articles in scientific journals

  •  

    Conformational Space of the Translocation Domain of Botulinum Toxin: Atomistic Modeling and Mesoscopic Description of the Coiled-Coil Helix Bundle

    Alexandre Delort, Grazia Cottone, Thérèse E. Malliavin, Martin Michael Müller

    Abstract     

    Int. J. Mol. Sci., 25: 2481, 2024.

     


  •  

    Flexoelectric fluid membrane vesicles in spherical confinement

    Niloufar Abtahi, Lila Bouzar, Nadia Saidi-Amroun, Martin Michael Müller
    EPL, 131(1): 18001, 2020. See also arXiv:2006.04475.

     


  •  

    Isometric bending requires local constraints on free edges

    Jemal Guven, Martin Michael Müller, Pablo Vázquez-Montejo
    Math. Mech. Solids, 24: 4051, 2019. See also arXiv:1904.05855.

     


  •  

    Helical Superstructure of Intermediate Filaments

    Lila Bouzar, Martin Michael Müller, René Messina, Bernd Nöding, Sarah Köster, Hervé Mohrbach, Igor M. Kulić

    Intermediate filaments are the least explored among the large cytoskeletal elements. We show here that they display conformational anomalies in narrow microfluidic channels. Their unusual behavior can be understood as the consequence of a previously undetected, large scale helically curved superstructure. Confinement in a channel orders the otherwise soft, strongly fluctuating helical filaments and enhances their structural correlations, giving rise to experimentally detectable, strongly oscillating tangent correlation functions. We propose an explanation for the detected intrinsic curving phenomenon - an elastic shape instability that we call autocoiling. The mechanism involves self-induced filament buckling via a surface stress located at the outside of the cross-section. The results agree with ultrastructural findings and rationalize for the commonly observed looped intermediate filament shapes. Beyond curvature, explaining the molecular origin of the detected helical torsion remains an interesting challenge.

     Reduce     Read more

    Phys. Rev. Lett., 122: 098101, 2019. See also arXiv:1803.04691.

     


  •  

    Vesicle dynamics in confined steady and harmonically modulated Poiseuille flows

    Zakaria Boujja, Chaouqi Misbah, Hamid Ez-Zahraouy, Abdelilah Benyoussef, Thomas John, Christian Wagner, Martin Michael Müller

    Abstract     

    Phys. Rev. E, 98: 043111, 2018. See also arXiv:1810.04500.

     


  •  

    Confining a fluid membrane vesicle of toroidal topology in an adhesive hard sphere

    Lila Bouzar, Ferhat Menas, Martin Michael Müller

    Abstract     Read more

    IOP Conf. Series: MSE, 186: 012021, 2017.

     


  •  

    Squeezed helical elastica

    Lila Bouzar, Martin Michael Müller, Pierre Gosselin, Igor M. Kulić, Hervé Mohrbach

    Abstract     Read more

    Eur. Phys. J. E, 39: 114, 2016. See also arXiv:1606.03611.

     


  •  

    How bio-filaments twist membranes

    Julien Fierling, Albert Johner, Igor M. Kulić, Hervé Mohrbach, Martin Michael Müller

    Abstract     

    Soft Matter, 12: 5747, 2016.

     


  •  

    Toroidal membrane vesicles in spherical confinement

    Lila Bouzar, Ferhat Menas, Martin Michael Müller

    Abstract     Read more

    Phys. Rev. E, 92: 032721, 2015. See also arXiv:1509.00765.

     


  •  

    Non-linear buckling and symmetry breaking of a soft elastic sheet sliding on a cylindrical substrate

    Norbert Stoop, Martin Michael Müller

    We consider the axial compression of a thin sheet wrapped around a rigid cylindrical substrate. In contrast to the wrinkling-to-fold transitions exhibited in similar systems, we find that the sheet always buckles into a single symmetric fold, while periodic solutions are unstable. Upon further compression, the solution breaks symmetry and stabilizes into a recumbent fold. Using linear analysis and numerics, we theoretically predict the buckling force and energy as a function of the compressive displacement. We compare our theory to experiments employing cylindrical neoprene sheets and find remarkably good agreement.

     Reduce     Read more

    Int. J. Non-Linear Mech., 75: 115, 2015. See also arXiv:1503.05030.

     


  •  

    Crunching Biofilament Rings

    Julien Fierling, Martin Michael Müller, Hervé Mohrbach, Albert Johner, Igor M. Kulić

    Abstract     Read more

    Europhys. Lett., 107(6): 68002, 2014. See also arXiv:1408.6787.

     


  •  

    Confotronic dynamics of tubular filaments

    Osman Kahraman, Hervé Mohrbach, Martin Michael Müller, Igor M. Kulić

    Abstract     Read more

    Soft Matter, 10(16): pp. 2836-2847, 2014. See also arXiv:1312.3106.

     


  •  

    Whirling skirts and rotating cones

    Jemal Guven, J. A. Hanna, Martin Michael Müller

    Abstract     

    New J. Phys., 15: 113055, 2013. See also arXiv:1306.2619.

     


  •  

    Myotubularin and PtdIns3P remodel the sarcoplasmic reticulum in muscle in vivo

    Leonela Amoasii, Karim Hnia, Gaëtan Chicanne, Andreas Brech, Belinda Simone Cowling, Martin Michael Müller, Yannick Schwab, Pascale Koebel, Arnaud Ferry, Bernard Payrastre, Jocelyn Laporte

    Abstract     

    J. Cell Sci., 126(8): 1806, 2013.

     


  •  

    Dipoles in thin sheets

    Jemal Guven, J. A. Hanna, Osman Kahraman, Martin Michael Müller

    Abstract     Read more

    Eur. Phys. J. E, 36: 106, 2013. See also arXiv:1212.3262.

     


  •  

    Fluid membrane vesicles in confinement

    Osman Kahraman, Norbert Stoop, Martin Michael Müller

    Abstract     Read more

    New J. Phys., 14: 095021, 2012.

     


  •  

    Petal shapes of sympetaleous flowers: the interplay between growth, geometry and elasticity

    Martine Ben Amar, Martin Michael Müller, Miguel Trejo

    Abstract     Read more

    New J. Phys., 14: 085014, 2012. Also featured in the Highlights of 2012.

     


  •  

    Morphogenesis of membrane invaginations in spherical confinement

    Osman Kahraman, Norbert Stoop, Martin Michael Müller

    Abstract     Read more

    Europhys. Lett., 97(6): 68008, 2012. See also arXiv:1201.2518.

     


  •  

    Conical instabilities on paper

    Jemal Guven, Martin Michael Müller, Pablo Vázquez-Montejo

    Abstract     Read more

    J. Phys. A: Math. Theor., 45(1): 015203, 2012. See also arXiv:1107.5008.

     


  •  

    Interface-mediated interactions: Entropic forces of curved membranes

    Pierre Gosselin, Hervé Mohrbach, Martin Michael Müller

    Abstract     Read more

    Phys. Rev. E, 83(5): 051921, 2011. See also arXiv:1011.1221.

     


  •  

    Self-Contact and Instabilities in the Anisotropic Growth of Elastic Membranes

    Norbert Stoop, Falk K. Wittel, Martine Ben Amar, Martin Michael Müller, Hans J. Herrmann

    Abstract     Read more

    Phys. Rev. Lett., 105(6): 068101, 2010. See also arXiv:1007.1871.

     


  •  

    Cell Model Approach to Membrane Mediated Protein Interactions

    Martin Michael Müller, Markus Deserno

    Abstract     Read more

    Prog. Theor. Phys. Suppl., 184: pp. 351-363, 2010.

     


  •  

    Hamiltonian formulation of surfaces with constant Gaussian curvature

    Miguel Trejo, Martine Ben Amar, Martin Michael Müller

    Abstract     Read more

    J. Phys. A: Math. Theor., 42(42): 425204, 2009.

     


  •  

    Local Membrane Mechanics of Pore-Spanning Bilayers

    Ingo Mey, Milena Stephan, Eva K. Schmitt, Martin Michael Müller, Martine Ben Amar, Claudia Steinem, Andreas Janshoff

    Abstract     Read more

    J. Am. Chem. Soc., 131(20): pp. 7031-7039, 2009.

     


  •  

    Elasticity Mapping of Pore-Suspending Native Cell Membranes

    Bärbel Lorenz, Ingo Mey, Siegfried Steltenkamp, Tamir Fine, Christina Rommel, Martin Michael Müller, Alexander Maiwald, Joachim Wegener, Claudia Steinem, Andreas Janshoff

    The mechanics of cellular membranes is governed by a non-equilibrium composite framework consisting of the semiflexible filamentous cytoskeleton and extracellular matrix proteins linked to the lipid bilayer. While elasticity information of plasma membranes has mainly been obtained from whole cell analysis, techniques that allow to address local mechanical properties of cell membranes are desirable to learn how their lipid and protein composition is reflected in the elastic behavior on local length scales. Here, we introduce an approach based on basolateral membranes of polar epithelial Madin-Darby canine kidney (MDCK) II cells, prepared on a highly ordered porous substrate that allows elastic mapping on a submicrometer length scale. A strong correlation between the density of actin filaments and the measured membrane elasticity is found. Spatially resolved indentation experiments carried out with atomic force and fluorescence microscope permit to relate the supramolecular structure to the elasticity of cellular membranes. It is shown that the elastic response of the pore-spanning cell membranes is governed by the local bending modules rather than the lateral tension.

     Reduce     Read more

    Small, 5(7): pp. 832-838, 2009.

     


  •  

    Conical Defects in Growing Sheets

    Martin Michael Müller, Martine Ben Amar, Jemal Guven

    Abstract     Read more

    Phys. Rev. Lett., 101(15): 156104, 2008. See also arXiv:0807.1814.

     


  •  

    How paper folds: bending with local constraints

    Jemal Guven, Martin Michael Müller

    A variational framework is introduced to describe how a surface bends when it is subject to local constraints on its geometry. This framework is applied to describe the patterns of a folded sheet of paper. The unstretchability of paper implies a constraint on the surface metric; bending is penalized by an energy quadratic in mean curvature. The local Lagrange multipliers enforcing the constraint are identified with a conserved tangential stress that couples to the extrinsic curvature of the sheet. The framework is illustrated by examining the deformation of a flat sheet into a generalized cone.

     Reduce     Read more

    J. Phys. A: Math. Theor., 41(5): 055203, 2008. See also arXiv:0712.0978.

     


  •  

    Contact lines for fluid surface adhesion

    Markus Deserno, Martin Michael Müller, Jemal Guven

    When a fluid surface adheres to a substrate, the location of the contact line adjusts in order to minimize the overall energy. This adhesion balance implies boundary conditions which depend on the characteristic surface deformation energies. We develop a general geometrical framework within which these conditions can be systematically derived. We treat both adhesion to a rigid substrate as well as adhesion between two fluid surfaces, and illustrate our general results for several important Hamiltonians involving both curvature and curvature gradients. Some of these have previously been studied using very different techniques, others are to our knowledge new. What becomes clear in our approach is that, except for capillary phenomena, these boundary conditions are not the manifestation of a local force balance, even if the concept of surface stress is properly generalized. Hamiltonians containing higher order surface derivatives are not just sensitive to boundary translations but also notice changes in slope or even curvature. Both the necessity and the functional form of the corresponding additional contributions follow readily from our treatment.

     Reduce     Read more

    Phys. Rev. E, 76(1): 011605, 2007. See also cond-mat/0703019.
    Also featured in the Virtual Journal of Biological Physics Research.

     


  •  

    Balancing torques in membrane-mediated interactions: Exact results and numerical illustrations

    Martin Michael Müller, Markus Deserno, Jemal Guven

    Torques on interfaces can be described by a divergence-free tensor which is fully encoded in the geometry. This tensor consists of two terms, one originating in the couple of the stress, the other capturing an intrinsic contribution due to curvature. In analogy to the description of forces in terms of a stress tensor, the torque on a particle can be expressed as a line integral along any contour surrounding the particle. Interactions between particles mediated by a fluid membrane are studied within this framework. In particular, torque balance places a strong constraint on the shape of the membrane. Symmetric two-particle configurations admit simple analytical expressions which are valid in the fully nonlinear regime; in particular, the problem may be solved exactly in the case of two membrane-bound parallel cylinders. This apparently simple system provides some flavor of the remarkably subtle nonlinear behavior associated with membrane-mediated interactions.

     Reduce     Read more

    Phys. Rev. E, 76(1): 011921, 2007. See also cond-mat/0702340.
    Also featured in the Virtual Journal of Biological Physics Research.

     


  •  

    Aggregation and vesiculation of membrane proteins by curvature-mediated interactions

    Benedict J. Reynwar, Gregoria Illya, Vagelis A. Harmandaris, Martin Michael Müller, Kurt Kremer, Markus Deserno

    Abstract     Read more

    Nature 447(7143): pp. 461-464, 2007.

     


  •  

    How to determine local elastic properties of lipid bilayer membranes from atomic-force-microscope measurements: A theoretical analysis

    Davood Norouzi, Martin Michael Müller, Markus Deserno

    Measurements with an atomic force microscope (AFM) offer a direct way to probe elastic properties of lipid bilayer membranes locally: provided the underlying stress-strain relation is known, material parameters such as surface tension or bending rigidity may be deduced. In a recent experiment a pore-spanning membrane was poked with an AFM tip, yielding a linear behavior of the force-indentation curves. A theoretical model for this case is presented here which describes these curves in the framework of Helfrich theory. The linear behavior of the measurements is reproduced if one neglects the influence of adhesion between tip and membrane. Including it via an adhesion balance changes the situation significantly: force-distance curves cease to be linear, hysteresis and nonzero detachment forces can show up. The characteristics of this rich scenario are discussed in detail in this article.

     Reduce     Read more

    Phys. Rev. E, 74(6): 061914, 2006. See also cond-mat/0602662.
    Also featured in the Virtual Journal of Biological Physics Research.

     


  •  

    Mechanical Properties of Pore-Spanning Lipid Bilayers Probed by Atomic Force Microscopy

    Siegfried Steltenkamp, Martin Michael Müller, Markus Deserno, Christian Hennesthal, Claudia Steinem, Andreas Janshoff

    Abstract     Read more

    Biophys. J., 91(1): pp. 217-226, 2006.

     


  •  

    Interface mediated interactions between particles -- a geometrical approach

    Martin Michael Müller, Markus Deserno, Jemal Guven

    Abstract     Read more

    Phys. Rev. E, 72(6): 061407, 2005. See also cond-mat/0506019.
    Also featured in the Virtual Journal of Biological Physics Research.

     


  •  

    Geometry of surface-mediated interactions

    Martin Michael Müller, Markus Deserno, Jemal Guven

    Abstract     Read more

    Europhys. Lett., 69(3): pp. 482-488, 2005. See also cond-mat/0409043.

     


 

 

2. Books

 

  • New Trends in the Physics and Mechanics of Biological Systems
    Lecture Notes of the Les Houches Summer School, vol. 92 (Oxford University Press, 2011),
    edited by Martine Ben Amar, Alain Goriely, Martin Michael Müller and Leticia Cugliandolo.

    Chapter 9:
    The physics of the cell membrane
    Martin Michael Müller and Martine Ben Amar.

 

 


 

 

3. Theses

  • Theoretical examinations of interface mediated interactions between colloidal particles, diploma thesis (2004).


  • Theoretical studies of fluid membrane mechanics, dissertation (2007).


  • Symmetry breaking in bioelasticity, habilitation thesis (2015).

 

 

 
     

 

     © Martin Michael Müller